【題目】已知直線l1:2x-y+2=0與l2:x+2y-4=0,點P(1, m).
(Ⅰ)若點P到直線l1, l2的距離相等,求實數(shù)m的值;
(Ⅱ)當m=1時,已知直線l經(jīng)過點P且分別與l1, l2相交于A, B兩點,若P恰好
平分線段AB,求A, B兩點的坐標及直線l的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).
(1)設(shè)函數(shù),試求的伴隨向量;
(2)記向量的伴隨函數(shù)為,求當且時的值;
(3)由(1)中函數(shù)的圖象(縱坐標不變)橫坐標伸長為原來的2倍,再把整個圖象向右平移個單位長度得到的圖象,已知,,問在的圖象上是否存在一點P,使得.若存在,求出P點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018河南豫南九校高三下學期第一次聯(lián)考】設(shè)函數(shù).
(I)當時, 恒成立,求的范圍;
(II)若在處的切線為,且方程恰有兩解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線(為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線與交于,兩點,與交于,兩點.當時,;當,.
(1)求和的值.
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界
(1)設(shè),判斷在上是否是有界函數(shù),若是,說明理由,并寫出所有上界的值的集合;若不是,也請說明理由.
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,E,F分別為邊長為2的正方形ABCD的邊BC,CD的中點,沿圖中虛線折起,使得B,C,D三點重合于點O,點O在平面AEF上的射影H.
(1)求證:面面OEA;
(2)求證:點H是的垂心;
(3)求OH的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①命題“若,則”的否命題為“若,則”;
②“”是“”的必要不充分條件;
③命題“,使得”的否定是:“,均有”;
④命題“若,則”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com