已知正六棱柱的高為6,底面邊長(zhǎng)為3,則它的體積為( 。
A、48
B、27
3
C、81
3
D、36
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:求出正六棱柱的底面積,即可求出正六棱柱的體積.
解答: 解:正六棱柱底面邊長(zhǎng)為3,底面積S=6×
3
4
×32=
27
3
2
,
因?yàn)楦邽?,所以體積V=Sh=
27
3
2
×6
=81
3
,
故選:C.
點(diǎn)評(píng):本題考查正六棱柱的體積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=7+ax-3(a>0,a≠1)的圖象恒過定點(diǎn)P,則定點(diǎn)P的坐標(biāo)是( 。
A、(3,3)
B、(3,2)
C、(3,8)
D、(3,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,Sn為其前n項(xiàng)和,則
Sn
n
S2n
2n
,
S3n
3n
成等差數(shù)列,試在等比數(shù)列{bn}中寫出類似的結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(logax)=
a
a2-1
(x-x-1)
,其中a>0,且a≠1.
(1)求函數(shù)y=f(x)的解析式,并判斷其奇偶性;
(2)當(dāng)x∈(-∞,2)時(shí),f(x)-4的值恒為負(fù)數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足f(x)=f(x+4),f(2+x)=f(2-x),若0<x<2時(shí),f(x)=2-x,則f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2+y2-6x+2y+F=0是圓的方程,則F的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-b(b≠0)有一個(gè)零點(diǎn)2,則函數(shù)g(x)=bx2+2ax的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離等于6的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)橢圓中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長(zhǎng)為4+2
3
,且∠F1BF2=
3

(1)求這個(gè)橢圓的方程;
(2)斜率為1的直線交橢圓C于A、B兩點(diǎn),求|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案