若數(shù)列{},(n∈N)是等差數(shù)列,則有數(shù)列b=(n∈N)也是等差數(shù)列,類比上述性質(zhì),相應(yīng)地:若數(shù)列{c}是等比數(shù)列,且c>0(n∈N),則有d=_____________________(n∈N)也是等比數(shù)列。

試題分析:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{an}是等差數(shù)列,則當(dāng)bn=時(shí),數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=時(shí),數(shù)列{bn}也是等比數(shù)列.故答案為:
點(diǎn)評(píng):類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,,且滿足 .
(Ⅰ)求及數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,已知,
(1)設(shè),證明數(shù)列是等比數(shù)列  (2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,=1,,其中實(shí)數(shù).
(I) 求
(Ⅱ)猜想的通項(xiàng)公式, 并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列的前項(xiàng)和,則此數(shù)列的通項(xiàng)公式為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)平面將空間分成兩部分,兩個(gè)平面將空間最多分成四部分,三個(gè)平面最多將空間分成八部分,…,由此猜測(cè)()個(gè)平面最多將空間分成 ( )
A.部分B.部分C.部分D.部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列的通項(xiàng)公式是,且,則(   )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)數(shù)列的前n項(xiàng)和為,已知數(shù)列是首項(xiàng)和公比都為3的等比數(shù)列,則數(shù)列的通項(xiàng)公式為=_____________________

查看答案和解析>>

同步練習(xí)冊(cè)答案