【題目】某包子店每天早晨會(huì)提前做好一定量的包子,以保證當(dāng)天及時(shí)供應(yīng),該包子店記錄了60天包子的日需求量(單位:個(gè),).按,,,,分組,整理得到如圖所示的頻率分布直方圖,圖中.
(1)求包子日需求量平均數(shù)的估計(jì)值(每組以中點(diǎn)值作為代表);
(2)若包子店想保證至少的天數(shù)能夠足量供應(yīng),則每天至少要做多少個(gè)包子?
【答案】(1)775(2)880個(gè)
【解析】
(1)由圖可知,各分組的頻率分別為,,,,,即可求得答案;
(2)設(shè)包子店每天至少做個(gè)包子,求得和,即可求得的范圍,即可求得答案.
(1)由圖可知,各分組的頻率分別為,,,,.
包子日需求量平均數(shù)的估計(jì)值為
.
(2)設(shè)包子店每天至少做個(gè)包子.
,
,
.
由頻率分布直方圖可知,
令,
解得.
每天至少要做880個(gè)包子.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過(guò)點(diǎn).
(1)求橢圓的方程
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線(xiàn)與橢圓交于、兩點(diǎn),問(wèn)是否存在直線(xiàn),使得為的垂心,若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)g(x)=﹣4sin2()+2圖象上點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)f(x)的圖象,則下列說(shuō)法正確的是( )
A.函數(shù)f(x)在區(qū)間[,]上單調(diào)遞減
B.函數(shù)f(x)的最小正周期為2π
C.函數(shù)f(x)在區(qū)間[,]的最小值為
D.x是函數(shù)f(x)的一條對(duì)稱(chēng)軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,已知橢圓上存在點(diǎn),使,且這樣的點(diǎn)有且只有兩個(gè).
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),且,是坐標(biāo)原點(diǎn),求的面積取得最大值時(shí)的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車(chē)的數(shù)量與日俱增.由于該小區(qū)建成時(shí)間較早,沒(méi)有配套建造地下停車(chē)場(chǎng),小區(qū)內(nèi)無(wú)序停放的車(chē)輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年小區(qū)登記在冊(cè)的私家車(chē)數(shù)量(累計(jì)值,如147表示2016年小區(qū)登記在冊(cè)的所有車(chē)輛數(shù),其余意義相同),得到如下數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數(shù)量(單位:輛) | 37 | 104 | 147 | 196 | 216 |
(1)若私家車(chē)的數(shù)量與年份編號(hào)滿(mǎn)足線(xiàn)性相關(guān)關(guān)系,求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)2020年該小區(qū)的私家車(chē)數(shù)量;
(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個(gè)停車(chē)位.為解決小區(qū)車(chē)輛亂停亂放的問(wèn)題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無(wú)車(chē)位的車(chē)輛進(jìn)入小區(qū).由于車(chē)位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式將車(chē)位對(duì)業(yè)主出租,租期一年,競(jìng)拍方案如下:①截至2018年己登記在冊(cè)的私家車(chē)業(yè)主擁有競(jìng)拍資格;②每車(chē)至多中請(qǐng)一個(gè)車(chē)位,由車(chē)主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出自己的報(bào)價(jià);③根據(jù)物價(jià)部門(mén)的規(guī)定,競(jìng)價(jià)不得超過(guò)1200元;④申請(qǐng)階段截止后,將所有申請(qǐng)的業(yè)主報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則以提出申請(qǐng)的時(shí)間在前的業(yè)主成交,為預(yù)測(cè)本次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的40位業(yè)主,進(jìn)行了競(jìng)拍意向的調(diào)查,并對(duì)他們的擬報(bào)競(jìng)價(jià)進(jìn)行了統(tǒng)計(jì),得到如圖頻率分布直方圖:
(i)求所抽取的業(yè)主中有意向競(jìng)拍報(bào)價(jià)不低于1000元的人數(shù);
(ii)如果所有符合條件的車(chē)主均參與競(jìng)拍,利用樣本估計(jì)總體的思想,請(qǐng)你據(jù)此預(yù)測(cè)至少需要報(bào)價(jià)多少元才能競(jìng)拍車(chē)位成功?(精確到整數(shù))
參考公式及數(shù)據(jù):對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計(jì)分別為:;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F是拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn),若點(diǎn)P(x0,4)在拋物線(xiàn)C上,且.
(1)求拋物線(xiàn)C的方程;
(2)動(dòng)直線(xiàn)l:x=my+1(mR)與拋物線(xiàn)C相交于A,B兩點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線(xiàn)AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)x+alnx.
(1)求f(x)在(1,f(1))處的切線(xiàn)方程(用含a的式子表示)
(2)討論f(x)的單調(diào)性;
(3)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,短軸長(zhǎng)為4.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條直線(xiàn),分別交橢圓于兩點(diǎn)(異于),當(dāng)直線(xiàn),的斜率之和為4時(shí),直線(xiàn)恒過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保證樹(shù)苗的質(zhì)量,林業(yè)管理部門(mén)在每年3月12日植樹(shù)節(jié)前都對(duì)樹(shù)苗進(jìn)行檢測(cè),現(xiàn)從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度單位長(zhǎng)度:,其莖葉圖如圖所示,則下列描述正確的是( )
A. 甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊
B. 甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊
C. 乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊
D. 乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com