分析 (1)由雙曲線的漸近線方程及斜率公式,即可求得a2=3b2,c=2$\sqrt{2}$,即a2+b2=8,即可求得a和b的值,求得橢圓方程;
(2)設(shè)直線AB的方程,代入橢圓方程,利用韋達(dá)定理求得斜率丨k丨用t表示,利用基本不等式即可求得k的取值范圍.
解答 解:(1)由一條漸近線與x軸所成的夾角為30°,則$\frac{a}$=tan30°=$\frac{\sqrt{3}}{3}$,即a2=3b2,
由2c=4$\sqrt{2}$.c=2$\sqrt{2}$,則a2+b2=8,
解得:a2=8,b2=2,
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(2)由(1)可知:F2(2,0),直線AB的方程:x=ty+2,A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{x=ty+2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:(t2+3)y2+4ty-2=0,
y1+y2=-$\frac{4t}{{t}^{2}+3}$,x1+x2=$\frac{12}{{t}^{2}+3}$,
則E($\frac{6}{{t}^{2}+3}$,-$\frac{2t}{{t}^{2}+3}$),
由F1(-2,0),則直線F1E的斜率k=$\frac{\frac{2t}{{t}^{2}+3}}{-2-\frac{6}{{t}^{2}+3}}$=-$\frac{t}{{t}^{2}+6}$,
①當(dāng)t=0時(shí),k=0,
②當(dāng)t≠0時(shí),丨k丨=$\frac{丨t丨}{丨t{丨}^{2}+6}$=$\frac{1}{丨t丨+\frac{6}{丨t丨}}$≤$\frac{1}{2\sqrt{6}}$,
即丨k丨∈(0,$\frac{\sqrt{6}}{12}$],
∴k的取值范圍[-$\frac{\sqrt{6}}{12}$,$\frac{\sqrt{6}}{12}$].
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查韋達(dá)定理,直線的斜率公式及基本不等式的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com