19.若復(fù)數(shù)z滿足2z-$\overline{z}$=$\frac{2i-3}{i}$(i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{5}$B.5C.$\sqrt{13}$D.13

分析 設(shè)z=a+bi(a,b∈R),代入2z-$\overline{z}$=$\frac{2i-3}{i}$,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡后結(jié)合復(fù)數(shù)相等的條件得到a,b的值,則|z|可求.

解答 解:設(shè)z=a+bi(a,b∈R),則$\overline{z}=a-bi$,
代入2z-$\overline{z}$=$\frac{2i-3}{i}$,
得2(a+bi)-(a-bi)=a+3bi=$\frac{(2i-3)(-i)}{-{i}^{2}}=2+3i$,
∴a=2,b=1,
則|z|=$\sqrt{{a}^{2}+^{2}}=\sqrt{5}$.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(3,-2),且$\overrightarrow{a}$∥$\overrightarrow$,則m=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知關(guān)于x的不等式m-|x+1|≤|2x+1|+|x+1|的解集為R,則實(shí)數(shù)m的最大值為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系中,定義兩點(diǎn)A(xA,yA),B(xB,yB)間的“L-距離”為d(A-B)=|xA-xB|+|yA-yB|.現(xiàn)將邊長為1的正三角形按如圖所示方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合,記邊AB所在的直線斜率為k(0≤k≤$\sqrt{3}$),則d(B-C)取得最大值時,邊AB所在直線的斜率為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x≤1},B={y|y=x${\;}^{\frac{1}{2}}$,x∈($\frac{1}{4}$,1)},則A∩B=( 。
A.(-∞,1)B.(-∞,1]C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={-1,2,3,6},B={x|-2<x<3},則A∩B={-1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=cos2x+6cos($\frac{π}{2}$-x)的最大值為(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案