分析 (1)設(shè)N(6,n),則圓N為:(x-6)2+(y-n)2=n2,n>0,從而得到|7-n|=|n|+5,由此能求出圓N的標(biāo)準(zhǔn)方程.
(2)由題意得OA=2$\sqrt{5}$,kOA=2,設(shè)l:y=2x+b,則圓心M到直線l的距離:d=$\frac{|5+b|}{\sqrt{5}}$,由此能求出直線l的方程.
(3)$\overrightarrow{TA}+\overrightarrow{TP}$=$\overrightarrow{TQ}$,即|$\overrightarrow{TA}$|=$\sqrt{(t-2)^{2}+{4}^{2}}$,又|$\overrightarrow{PQ}$|≤10,得t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$],對(duì)于任意t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$],欲使$\overrightarrow{TA}=\overrightarrow{PQ}$,只需要作直線TA的平行線,使圓心到直線的距離為$\sqrt{25-\frac{|TA{|}^{2}}{4}}$,由此能求出實(shí)數(shù)t的取值范圍.
解答 解:(1)∵N在直線x=6上,∴設(shè)N(6,n),
∵圓N與x軸相切,∴圓N為:(x-6)2+(y-n)2=n2,n>0,
又圓N與圓M外切,圓M:x2+y2-12x-14y+60=0,即圓M:(x-6)2+(x-7)2=25,
∴|7-n|=|n|+5,解得n=1,
∴圓N的標(biāo)準(zhǔn)方程為(x-6)2+(y-1)2=1.
(2)由題意得OA=2$\sqrt{5}$,kOA=2,設(shè)l:y=2x+b,
則圓心M到直線l的距離:d=$\frac{|12-7+b|}{\sqrt{{2}^{2}+1}}$=$\frac{|5+b|}{\sqrt{5}}$,
則|BC|=2$\sqrt{{5}^{2}-gdexyb4^{2}}$=2$\sqrt{25-\frac{(5+b)^{2}}{5}}$,BC=2$\sqrt{5}$,即2$\sqrt{25-\frac{(5+b)^{2}}{5}}$=2$\sqrt{5}$,
解得b=5或b=-15,
∴直線l的方程為:y=2x+5或y=2x-15.
(3)設(shè)P(x1,y1),Q(x2,y2),
∵A(2,4),T(t,0),$\overrightarrow{TA}+\overrightarrow{TP}=\overrightarrow{TQ}$,
∴$\left\{\begin{array}{l}{{x}_{2}={x}_{1}+2-t}\\{{y}_{2}={y}_{1}+4}\end{array}\right.$,①
∵點(diǎn)Q在圓M上,∴(x2-6)2+(y2-7)2=25,②
將①代入②,得(x1-t-4)2+(y1-3)2=25,
∴點(diǎn)P(x1,y1)即在圓M上,又在圓[x-(t+4)]2+(y-3)2=25上,
從而圓(x-6)2+(y-7)2=25與圓[x-(t+4)]2+(y-3)2=25有公共點(diǎn),
∴5-5≤$\sqrt{[(t+4)-6]^{2}+(3-7)^{2}}$≤5+5.
解得2-2$\sqrt{21}$≤t$≤2+2\sqrt{21}$,
∴實(shí)數(shù)t的取值范圍是[2-2$\sqrt{21}$,2+2$\sqrt{21}$].
點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程的求法,考查直線方程的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x | B. | y=3x | C. | y=4x | D. | y=5x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{13}$ | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com