【題目】已知橢圓的左焦點(diǎn)為F1有一小球A 從F1處以速度v開始沿直線運(yùn)動(dòng),經(jīng)橢圓壁反射(無論經(jīng)過幾次反射速度大小始終保持不變,小球半徑忽略不計(jì)),若小球第一次回到F1時(shí),它所用的最長時(shí)間是最短時(shí)間的5倍,則橢圓的離心率為( )

A. B. C. D.

【答案】C

【解析】假設(shè)橢圓的長軸在x軸,短軸在y軸上,分為以下三種情況:

球從F1沿x軸向左運(yùn)動(dòng),碰到左頂點(diǎn)必然原路反彈,這時(shí)第一次回到F1的路程是2(a-c);

球從F1沿x軸向右運(yùn)動(dòng),碰到右頂點(diǎn)必然原路反彈,這時(shí)第一次回到F1的路程是2(a+c);

球從F1沿x軸向上(或向下)運(yùn)動(dòng),碰到橢圓上的點(diǎn)A,反彈后經(jīng)過橢圓的另一個(gè)焦點(diǎn)F2,再彈到橢圓上的點(diǎn)B,經(jīng)過點(diǎn)B反彈后經(jīng)過焦點(diǎn)F2,此時(shí)小球經(jīng)過的路程是4a.

綜上所述,從點(diǎn)F1沿直線出發(fā),經(jīng)橢圓反彈后第一次回到點(diǎn)F1時(shí),小球經(jīng)過的最大路程是4a,最小路程是2(a-c),

所以由題意可知4a=10(a-c),即6a=10c,得

所以橢圓的離心率為.

本題選擇C選項(xiàng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】100名學(xué)生報(bào)名參加A、B兩個(gè)課外活動(dòng)小組,報(bào)名參加A組的人數(shù)是全體學(xué)生人數(shù)的 ,報(bào)名參加B組的人數(shù)比報(bào)名參加A組的人數(shù)多3,兩組都沒報(bào)名的人數(shù)是同時(shí)報(bào)名參加A、B兩組人數(shù)的 多1,求同時(shí)報(bào)名參加A、B兩組人數(shù)(
A.36
B.13
C.24
D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞) 上單調(diào)遞減的函數(shù)是(
A.y=x2
B.y=x1
C.y=x2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)若, 是直線軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;

(Ⅱ)若直線被圓截得的弦長等于圓的半徑倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ2.正方形ABCD的頂點(diǎn)都在C2上,且A,B,CD依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為.

(1)求點(diǎn)A,BC,D的直角坐標(biāo);

(2)設(shè)PC1上任意一點(diǎn),求|PA|2|PB|2|PC|2|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)若,求的單調(diào)區(qū)間;()若有最大值3,求的值;()若的值域是,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=x2|x﹣a|(a∈R).21世紀(jì)教育網(wǎng)
(1)判定f(x)的奇偶性,并說明理由;
(2)當(dāng)a≠0時(shí),是否存在一點(diǎn)M(t,0),使f(x)的圖象關(guān)于點(diǎn)M對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定義域;
(2)判斷f(x)在其定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,分別是的中點(diǎn),平面平面,是邊長為2的正三角形,.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案