【題目】已知函數(shù)是定義在上的奇函數(shù),且, .
(1)求函數(shù)的解析式;
(2)判斷并證明函數(shù)在上的單調(diào)性;
(3)令,若對任意的都有,求實數(shù)的取值范圍.
【答案】(1);(2)證明見解析;(3)
【解析】試題分析:(1)由題意易得: ,從而解得a,b的值,得到函數(shù)的表達(dá)式;(2)利用函數(shù)的單調(diào)性定義判斷函數(shù)在上的單調(diào)性;(3)對任意的都有恒成立,即.
試題解析:
(1)
,即
又函數(shù)是定義在上的奇函數(shù)
, ,即
解得:
(2) 函數(shù)在上的單調(diào)遞減,在上單調(diào)遞增
證明如下:取且
且
即
,即
函數(shù)在上的單調(diào)遞減
同理可證得函數(shù)在上單調(diào)遞增 .
(3)
令
由(2)可知函數(shù)在上單調(diào)遞減,在上單調(diào)遞增
函數(shù)的對稱軸方程為
函數(shù)在上單調(diào)遞增
當(dāng)時, ;當(dāng)時,
即,
又對任意的都有恒成立
即
解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖.
為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.
(1)當(dāng)時,記甲型號電視機的“星級賣場”數(shù)量為,乙型號電視機的“星級賣場”數(shù)量為,比較的大小關(guān)系;
(2)在這10個賣場中,隨機選取2個賣場,記為其中甲型號電視機的“星級賣場”的個數(shù),求的分布列和數(shù)學(xué)期望;
(3)若,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷為何值時,達(dá)到最小值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆湖北省武漢市武昌區(qū)高三1月調(diào)研考試文數(shù)】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè),若對,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆安徽百校論壇高三文上學(xué)期聯(lián)考二】已知函數(shù).
(1)若對恒成立,求實數(shù)的取值范圍;
(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣城出租車的收費標(biāo)準(zhǔn)是:起步價是元(乘車不超過千米);行駛千米后,每千米車費1.2元;行駛千米后,每千米車費1.8元.
(1)寫出車費與路程的關(guān)系式;
(2)一顧客計劃行程千米,為了省錢,他設(shè)計了三種乘車方案:
①不換車:乘一輛出租車行千米;
②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;
③分三段乘車:每乘千米換一次車.
問哪一種方案最省錢.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點處的切線為直線.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是實數(shù)集,滿足若a∈A,則∈A,a≠1,且1A.
(1)若2∈A,則集合A中至少還有幾個元素?求出這幾個元素.
(2)集合A中能否只含有一個元素?請說明理由.
(3)若a∈A,證明:1-∈A.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com