8.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,滿足|$\overrightarrow{a}$|=1且($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=$\frac{1}{2}$.$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$-$\overrightarrow$|的值(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2

分析 由題意求得|$\overrightarrow$|=$\frac{\sqrt{2}}{2}$,$\overrightarrow{a}•\overrightarrow$=$\frac{1}{2}$,再根據(jù)|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}-\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}{+\overrightarrow}^{2}-2\overrightarrow{a}•\overrightarrow}$,計算求的結(jié)果.

解答 解:由題意可得${\overrightarrow{a}}^{2}$-${\overrightarrow}^{2}$=1-${\overrightarrow}^{2}$=$\frac{1}{2}$,∴|$\overrightarrow$|=$\frac{\sqrt{2}}{2}$,∴$\overrightarrow{a}•\overrightarrow$=1•$\frac{\sqrt{2}}{2}$•cos45°=$\frac{1}{2}$,
∴|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}-\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}{+\overrightarrow}^{2}-2\overrightarrow{a}•\overrightarrow}$=$\sqrt{1+\frac{1}{2}-1}$=$\frac{\sqrt{2}}{2}$,
故選:C.

點(diǎn)評 本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex+ax-3,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-2.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)用[m]表示不超過實(shí)數(shù)m的最大整數(shù),如:[0,3]=0,[-1,3]=-2,若x>0時,(m-x)ex<m+2,求[m]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若雙曲線的一條漸近線方程為y=$\sqrt{2}$x,則其離心率為$\frac{{\sqrt{6}}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{g(x),x<0}\end{array}}$為奇函數(shù),則g(x)=-x2-2x(x<0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.①求函數(shù)的導(dǎo)數(shù):y=$\frac{x}{(2x+1)^{3}}$
②計算定積分:${∫}_{-1}^{8}$$\root{3}{x}$dx=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線y2=-x與直線y=k(x+1)相交于A,B兩點(diǎn).
(1)求證:OA⊥OB;
(2)是否存k使△OAB的面積等于1,若存在求k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.計算2x6÷x4的結(jié)果是( 。
A.x2B.2x2C.2x4D.2x10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求適合下列條件的曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在y軸上,長軸長等于10,離心率等于$\frac{3}{5}$的橢圓標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)A(3,-1),并且對稱軸都在坐標(biāo)軸上的等軸雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.運(yùn)行下面的程序,輸出的結(jié)果是24.

查看答案和解析>>

同步練習(xí)冊答案