12.∠AOB在平面α內(nèi),OC是α的斜線,OB為OC在平面α內(nèi)的射影,若∠COA=θ,∠COB=θ1,∠BOA=θ2,則cosθ、cosθ1、cosθ2三者之間滿足的關(guān)系為cosθ=cosθ1•cosθ2

分析 過C作CB⊥OB于B,過B作BA⊥OA于A,連接AC.則可證OA⊥AC,用OA,OB,OC表示出三個角的余弦值即可得出結(jié)論.

解答 解:過C作CB⊥OB于B,過B作BA⊥OA于A,連接AC.
∵OB為OC在平面α內(nèi)的射影,∴BC⊥平面α,
∵OA?平面α,
∴BC⊥OA,又OA⊥AB,BC∩AB=B,
∴OA⊥平面ABC,∴OA⊥AC.
∴cosθ=$\frac{OA}{OC}$.cosθ1=$\frac{OB}{OC}$,cosθ2=$\frac{OA}{OB}$.
∴cosθ=cosθ1•cosθ2
故答案為:cosθ=cosθ1•cosθ2

點評 本題考查了線面角的定義,線面垂直的判定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知a,b,m都是正數(shù),且a<b,用分析法證明$\frac{a+m}{b+m}$>$\frac{a}$;
(2)已知數(shù)列{an}的通項公式為an=$\frac{{3}^{n}-1}{2}$,n∈N*.利用(1)的結(jié)論證明如下等式:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知梯形ABCD的四個頂點的坐標(biāo)分別是A(0,0),B(3,0),C(2,$\sqrt{3}$)和D(1,$\sqrt{3}$),求它的中位線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB⊥BC,AD⊥DC,AC=2BC=2DC=2,3BM=BP.
(1)求證:CM∥平面PAD.
(2)若CM與平面PAC所成的角的正弦值為$\frac{\sqrt{5}}{5}$,求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b∈R+,且ab=9,則a+b的最小值為(  )
A.3B.4C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過(4,0)點,且與雙曲線x2-y2=2有相同的焦點.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)點M(m,0)在橢圓E的長軸上,點P是橢圓上任意一點,當(dāng)|$\overrightarrow{MP}}$|最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=-x3+ax2+bx+c的導(dǎo)數(shù)f'(x)滿足f'(-1)=0,f'(2)=9.
(1)求f(x)的單調(diào)區(qū)間;
(2)f(x)在區(qū)間[-2,2]上的最大值為20,求c的值.
(3)若函數(shù)f(x)的圖象與x軸有三個交點,求c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(2x-$\sqrt{x}$)8的展開式中,二項式系數(shù)最大的項的值等于1120,則實數(shù)x的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a=3,b=2,A=$\frac{π}{3}$,則cosB=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$或$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{3}$或$-\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案