【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個(gè)樹形圖:

易知第三行有白圈5個(gè),黑圈4個(gè).我們采用坐標(biāo)來表示各行中的白圈、黑圈的個(gè)數(shù).比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的坐標(biāo),則________

【答案】1

【解析】

根據(jù)圖甲所示的分形規(guī)律,1個(gè)白圈分形為2個(gè)白圈1個(gè)黑圈,1個(gè)黑圈分形為1個(gè)白圈2個(gè)黑圈,根據(jù)第三行的數(shù)據(jù)可求出第四行的坐標(biāo);再根據(jù)前五行的白圈數(shù)乘以2,分別是2,4,1028,82,即,,,可歸納第行的白圈數(shù),黑圈數(shù),即可得出結(jié)論.

根據(jù)圖甲所示的分形規(guī)律,1個(gè)白圈分形為2個(gè)白圈1個(gè)黑圈,1個(gè)黑圈分形為1個(gè)白圈2個(gè)黑圈,

第一行記為,第二行記為,第三行記為,第四行的白圈數(shù)為;黑圈數(shù)為

∴第四行的坐標(biāo);

第五行的坐標(biāo)

各行白圈數(shù)乘以2,分別是2,410,2882,即,,,,,

∴第行的白圈數(shù)為,黑圈數(shù)為,

.

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),如果存在實(shí)數(shù),且不同時(shí)成立),使得對(duì)恒成立,則稱函數(shù)映像函數(shù)”.

1)判斷函數(shù)是否是映像函數(shù),如果是,請(qǐng)求出相應(yīng)的的值,若不是,請(qǐng)說明理由;

2)已知函數(shù)是定義在上的映像函數(shù),且當(dāng)時(shí),.求函數(shù))的反函數(shù);

3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個(gè)整點(diǎn),其中.

(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;

(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.

i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,

ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放.兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為(萬元),表示污水流量;鋪設(shè)管道的費(fèi)用(包括管道費(fèi))(萬元),表示輸送污水管道的長(zhǎng)度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為,兩城鎮(zhèn)連接污水處理廠的管道總長(zhǎng)為千米.假定:經(jīng)管道輸送的污水流量不發(fā)生改變,污水經(jīng)處理后直接排入河中.請(qǐng)解答下列問題(結(jié)果精確到):

1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨(dú)建廠,共需多少總費(fèi)用?

2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費(fèi)用的函數(shù)關(guān)系式,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓E的左焦點(diǎn)且與x軸垂直的直線與橢圓E相交于的P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),的面積為.

1)求橢圓E的方程;

2)點(diǎn)M,N為橢圓E上不同兩點(diǎn),若,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),且,對(duì)于任意的,均有,.

1)求證:是等比數(shù)列,并求出的通項(xiàng)公式;

2)若數(shù)列中去掉的項(xiàng)后,余下的項(xiàng)組成數(shù)列,求;

3)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得、、成等比數(shù)列,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若時(shí),討論的單調(diào)性;

2)設(shè),若有兩個(gè)零點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)討論函數(shù)的單調(diào)性;

2)用表示中較大者,記函數(shù).若函數(shù)上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為(  )

A. x2+y-12=2B. x2+y+12=2C. x-12+y2=2D. x+12+y2=2

查看答案和解析>>

同步練習(xí)冊(cè)答案