【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放.兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為(萬(wàn)元),表示污水流量;鋪設(shè)管道的費(fèi)用(包括管道費(fèi))(萬(wàn)元),表示輸送污水管道的長(zhǎng)度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為、,兩城鎮(zhèn)連接污水處理廠的管道總長(zhǎng)為千米.假定:經(jīng)管道輸送的污水流量不發(fā)生改變,污水經(jīng)處理后直接排入河中.請(qǐng)解答下列問(wèn)題(結(jié)果精確到):

1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨(dú)建廠,共需多少總費(fèi)用?

2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費(fèi)用的函數(shù)關(guān)系式,并求的取值范圍.

【答案】(1)131.1萬(wàn)元 (2) ,的取值范圍為

【解析】

(1)將已知條件代入題給公式即可.

(2)將題給數(shù)據(jù)代入公式進(jìn)行整理,通過(guò)求的值域來(lái)求的取值范圍.

:1)分別單獨(dú)建廠,共需總費(fèi)用

萬(wàn)元

2)聯(lián)合建廠,共需總費(fèi)用

),

所以的函數(shù)關(guān)系式為),

),,

,

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,橢圓)的短軸長(zhǎng)等于圓半徑的倍,的離心率為

1)求的方程;

2)若直線交于兩點(diǎn),且與圓相切,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,平面平面.

1)求證:;

2)求二面角的余弦值;

3)在棱上是否存在點(diǎn),使得平面?若存在,求的值?若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,記.

1)若,,當(dāng)時(shí),求的最大值;

2)若,,且方程有兩個(gè)不相等的實(shí)根、,求的取值范圍;

3)若,,,且a、b、c是三角形的三邊長(zhǎng),試求滿足等式:有解的最大的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足

1)求點(diǎn)的軌跡方程;

2)經(jīng)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德?tīng)柌剂_在20世紀(jì)70年代創(chuàng)立的一門(mén)新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個(gè)樹(shù)形圖:

易知第三行有白圈5個(gè),黑圈4個(gè).我們采用坐標(biāo)來(lái)表示各行中的白圈、黑圈的個(gè)數(shù).比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的坐標(biāo),則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,的中點(diǎn)

1)證明:平面

2)若是邊長(zhǎng)為2的等邊三角形,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,,,,且對(duì)時(shí),有

(Ⅰ)設(shè)數(shù)列滿足,,證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案