17.已知直三棱柱ABC-A1B1C1的所有棱長都為2,點P,Q分別為棱CC1,BC的中點,則四面體A1-B1PQ的體積為$\frac{\sqrt{3}}{2}$.

分析 以A為原點,在平面ABC中過A作AC的垂線為x軸,AC為y軸,AA1為z軸,建立空間直角坐標系,利用向量法能求出四面體A1-B1PQ的體積.

解答 解:以A為原點,在平面ABC中過A作AC的垂線為x軸,AC為y軸,AA1為z軸,
建立空間直角坐標系,
A1(0,0,2),B1($\sqrt{3}$,1,2),
Q($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,0),P(0,2,1),
$\overrightarrow{P{B}_{1}}$=($\sqrt{3}$,-1,1),
$\overrightarrow{PQ}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,-1),$\overrightarrow{P{A}_{1}}$=(0,-2,1),
設平面PQB1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PQ}=\frac{\sqrt{3}}{2}x-\frac{1}{2}y-z=0}\\{\overrightarrow{n}•\overrightarrow{P{B}_{1}}=\sqrt{3}x-y+z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,0),
∴A1平面PQB1的距離d=$\frac{|\overrightarrow{P{A}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2\sqrt{3}}{2}$=$\sqrt{3}$,
|$\overrightarrow{PQ}$|=$\sqrt{\frac{3}{4}+\frac{1}{4}+1}$=$\sqrt{2}$,|$\overrightarrow{P{B}_{1}}$|=$\sqrt{3+1+1}$=$\sqrt{5}$,
cos<$\overrightarrow{PQ},\overrightarrow{P{B}_{1}}$>=$\frac{\overrightarrow{PQ}•\overrightarrow{P{B}_{1}}}{|\overrightarrow{PQ}|•|\overrightarrow{P{B}_{1}}|}$=$\frac{\frac{3}{2}+\frac{1}{2}-1}{\sqrt{2}•\sqrt{5}}$=$\frac{1}{\sqrt{10}}$,
sin<$\overrightarrow{PQ},\overrightarrow{P{B}_{1}}$>=$\sqrt{1-\frac{1}{10}}$=$\frac{3}{\sqrt{10}}$,
∴${S}_{△PQ{B}_{1}}$=$\frac{1}{2}×|\overrightarrow{PQ}|×|\overrightarrow{P{B}_{1}}|×sin<\overrightarrow{PQ},\overrightarrow{P{B}_{1}}>$=$\frac{1}{2}×\sqrt{2}×\sqrt{5}×\frac{3}{\sqrt{10}}$=$\frac{3}{2}$,
∴四面體A1-B1PQ的體積為:
V=$\frac{1}{3}×d×{S}_{△PQ{B}_{1}}$=$\frac{1}{3}×\sqrt{3}×\frac{3}{2}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查幾何體的體積、空間中線線、線面、面面間的位置關系等基礎知識,考查推理論證能力、空間想象能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結合思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知O是三角形ABC所在平面內(nèi)一點,且滿足$\overrightarrow{BA}$•$\overrightarrow{OA}$+$\overrightarrow{BC}$2=$\overrightarrow{AB}$•$\overrightarrow{OB}$+$\overrightarrow{AC}$2,則點O在( 。
A.AB邊中線所在的直線上B.∠C平分線所在的直線上
C.與AB垂直的直線上D.三角形ABC的外心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設l、m是兩條不同的直線,α是一個平面,則下列說法正確的是( 。
A.若l⊥m,m⊆α則l⊥αB.若l∥α,m⊆α則l∥mC.若l⊥α,l∥m則m⊥αD.若l∥α,m∥α則l∥m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在如圖所示的正方形中隨機選擇10000個點,則選點落入陰影部分(邊界曲線C為正態(tài)分布N(-1,1)的密度曲線的一部分)的點的個數(shù)的估計值為(  )
附:若X:N(μ,δ2),則P(μ-δ<X≤μ+δ)=0.6826.P(μ-δ<X≤μ+2δ)=0.9544.
A.906B.1359C.2718D.3413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|x+2a|+|x-1|.
(1)若a=1,解不等式f(x)≤5;
(2)當a≠0時,$g(a)=f({\frac{1}{a}})$,求滿足g(a)≤4的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若存在實數(shù)x,使|x-a|+|x-1|≤3成立,則實數(shù)a的取值范圍是(  )
A.[-2,1]B.[-2,2]C.[-2,3]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)=sinωx+cosωx(ω>0)的圖象相鄰的兩條對稱軸的距離為$\frac{π}{3}$,則ω的值為( 。
A.$\frac{1}{3}$B.$\frac{3}{π}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設復數(shù)z1,z2在復平面內(nèi)的對應點關于虛軸對稱,z1=1+2i,i為虛數(shù)單位,則z1z2=( 。
A.1-2iB.-5C.5D.5i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求函數(shù)f(x)=2x2-lnx的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案