4.(1)求7C${\;}_{6}^{3}$-4C${\;}_{7}^{4}$的值;
(2)設(shè)m,n∈N*,n≥m,求證:(m+1)C${\;}_{m}^{m}$+(m+2)C${\;}_{m+1}^{m}$+(m+3)C${\;}_{m+2}^{m}$+…+nC${\;}_{n-1}^{m}$+(n+1)C${\;}_{n}^{m}$=(m+1)C${\;}_{n+2}^{m+2}$.

分析 (1)由已知直接利用組合公式能求出7${C}_{6}^{3}-4{C}_{7}^{4}$的值.
(2)對(duì)任意m∈N*,當(dāng)n=m時(shí),驗(yàn)證等式成立;再假設(shè)n=k(k≥m)時(shí)命題成立,推導(dǎo)出當(dāng)n=k+1時(shí),命題也成立,由此利用數(shù)學(xué)歸納法能證明(m+1)C${\;}_{m}^{m}$+(m+2)C${\;}_{m+1}^{m}$+(m+3)C${\;}_{m+2}^{m}$+…+nC${\;}_{n-1}^{m}$+(n+1)C${\;}_{n}^{m}$=(m+1)C${\;}_{n+2}^{m+2}$.

解答 解:(1)7${C}_{6}^{3}-4{C}_{7}^{4}$
=$7×\frac{6×5×4}{3×2×1}$-4×$\frac{7×6×5×4}{4×3×2×1}$
=7×20-4×35=0.
證明:(2)對(duì)任意m∈N*
①當(dāng)n=m時(shí),左邊=(m+1)${C}_{m}^{m}$=m+1,
右邊=(m+1)${C}_{m+2}^{m+2}$=m+1,等式成立.
②假設(shè)n=k(k≥m)時(shí)命題成立,
即(m+1)C${\;}_{m}^{m}$+(m+2)C${\;}_{m+1}^{m}$+(m+3)C${\;}_{m+2}^{m}$+…+k${C}_{k-1}^{m}$+(k+1)${C}_{k}^{m}$=(m+1)${C}_{k+2}^{m+2}$,
當(dāng)n=k+1時(shí),
左邊=(m+1)${C}_{m}^{m}$+(m+2)${C}_{m+1}^{m}$+(m+3)${C}_{m+2}^{m}$+$…+k{C}_{k-1}^{m}$+(k+1)${C}_{k}^{m}$+(k+2)${C}_{k+1}^{m}$
=$(m+1){C}_{k+2}^{m+2}+(k+2){C}_{k+1}^{m}$,
右邊=$(m+1){C}_{k+3}^{m+2}$
∵$(m+1){C}_{k+3}^{m+2}-(m+1){C}_{k+2}^{m+2}$
=(m+1)[$\frac{(k+3)!}{(m+2)!(k-m+1)!}$-$\frac{(k+2)!}{(m+2)!(k-m)!}$]
=(m+1)×$\frac{(k+2)!}{(m+2)!(k-m+1)!}$[k+3-(k-m+1)]
=(k+2)$\frac{(k+1)!}{m!(k-m+1)!}$
=(k+2)${C}_{k+1}^{m}$,
∴$(m+1){C}_{k+2}^{m+2}+(k+2){C}_{k+1}^{m}$=(m+1)${C}_{k+3}^{m+2}$,
∴左邊=右邊,
∴n=k+1時(shí),命題也成立,
∴m,n∈N*,n≥m,(m+1)C${\;}_{m}^{m}$+(m+2)C${\;}_{m+1}^{m}$+(m+3)C${\;}_{m+2}^{m}$+…+nC${\;}_{n-1}^{m}$+(n+1)C${\;}_{n}^{m}$=(m+1)C${\;}_{n+2}^{m+2}$.

點(diǎn)評(píng) 本題考查組合數(shù)的計(jì)算與證明,是中檔題,解題時(shí)要認(rèn)真審題,注意組合數(shù)公式和數(shù)學(xué)歸納法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過(guò)D點(diǎn)作DF⊥CE,垂足為F.
(Ⅰ)證明:B,C,G,F(xiàn)四點(diǎn)共圓;
(Ⅱ)若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若(ax2+$\frac{1}{\sqrt{x}}$)5的展開(kāi)式中x5的系數(shù)是-80,則實(shí)數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒(méi)猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是$\frac{3}{4}$,乙每輪猜對(duì)的概率是$\frac{2}{3}$;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(I)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(II)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.為了得到函數(shù)y=sin(x+$\frac{π}{3}$)的圖象,只需把函數(shù)y=sinx的圖象上所有的點(diǎn)( 。
A.向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向右平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向上平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度D.向下平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知某三棱錐的三視圖如圖所示,則該三棱錐的體積是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在等比數(shù)列{an}中,a2•a4•a6=27,則log3(a1•a3•a5•a7)=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案