15.函數(shù)y=$\sqrt{3-2x-{x}^{2}}$的定義域是[-3,1].

分析 根據(jù)被開方數(shù)不小于0,構(gòu)造不等式,解得答案.

解答 解:由3-2x-x2≥0得:x2+2x-3≤0,
解得:x∈[-3,1],
故答案為:[-3,1]

點評 本題考查的知識點是函數(shù)的定義域,二次不等式的解法,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知復(fù)數(shù)z滿足z$\overline{z}$+2i$\overline{z}$=3+ai(a∈R),且z對應(yīng)的點在第二象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義在R上的偶函數(shù)f(x)在(-∞,0]上遞減,f(-1)=0,則滿足f(log2x)>0的x的取值范圍是$(0,\frac{1}{2})∪(2,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出以下四個函數(shù)的大致圖象:則函數(shù)f(x)=xlnx,g(x)=$\frac{lnx}{x}$,h(x)=xex,t(x)=$\frac{e^x}{x}$對應(yīng)的圖象序號順序正確的是( 。
A.②④③①B.④②③①C.③①②④D.④①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知2∉{x|$\frac{x}{|x-a|}$≥1},則a的取值范圍是(-∞,0)∪{2}∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,直線y=$\frac{2}$與橢圓交于B,C兩點,且∠BFC=90°,則該橢圓的離心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P-A1B1C1D1,下部的形狀是正四棱柱ABCD-A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6m,PO1=2m,則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為6m,則當(dāng)PO1為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的一個通項公式為$\frac{{n}^{2}+n+1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(Ⅰ)求∠B的大小;
(Ⅱ)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

同步練習(xí)冊答案