4.?dāng)?shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的一個(gè)通項(xiàng)公式為$\frac{{n}^{2}+n+1}{n+1}$.

分析 根據(jù)已知中數(shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的前四項(xiàng),歸納可得數(shù)列的通項(xiàng)公式.

解答 解:數(shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的值有兩部分組成,
整數(shù)部分為1,2,3,4,…,
分?jǐn)?shù)部分為:$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$,…
故整數(shù)部分為通項(xiàng)公式為n,分?jǐn)?shù)部分的通項(xiàng)公式為$\frac{1}{n+1}$,
故數(shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的一個(gè)通項(xiàng)公式為:n+$\frac{1}{n+1}$=$\frac{{n}^{2}+n+1}{n+1}$,
故答案為:$\frac{{n}^{2}+n+1}{n+1}$.

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則2x+y的最大值為(  )
A.0B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=$\sqrt{3-2x-{x}^{2}}$的定義域是[-3,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.以拋物線C的頂點(diǎn)為圓心的圓交C于A、B兩點(diǎn),交C的準(zhǔn)線于D、E兩點(diǎn).已知|AB|=4$\sqrt{2}$,|DE|=2$\sqrt{5}$,則C的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)圓x2+y2+2x-15=0的圓心為A,直線l過點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E.
(Ⅰ)證明|EA|+|EB|為定值,并寫出點(diǎn)E的軌跡方程;
(Ⅱ)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.中國(guó)古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=(  )
A.7B.12C.17D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù)01234≥5
保費(fèi)0.85aa1.25a1.5a1.75a2a
設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險(xiǎn)次數(shù)01234≥5
概率0.300.150.200.200.100.05
(Ⅰ)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(Ⅱ)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(Ⅲ)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A是橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左頂點(diǎn),斜率為k(k>0)的直線交E與A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(I)當(dāng)|AM|=|AN|時(shí),求△AMN的面積
(II) 當(dāng)2|AM|=|AN|時(shí),證明:$\sqrt{3}$<k<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2$\sqrt{3}$,則圓C的面積為4π.

查看答案和解析>>

同步練習(xí)冊(cè)答案