14.設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2$\sqrt{3}$,則圓C的面積為4π.

分析 圓C:x2+y2-2ay-2=0的圓心坐標(biāo)為(0,a),半徑為$\sqrt{{a}^{2}+2}$,利用圓的弦長公式,求出a值,進(jìn)而求出圓半徑,可得圓的面積.

解答 解:圓C:x2+y2-2ay-2=0的圓心坐標(biāo)為(0,a),半徑為$\sqrt{{a}^{2}+2}$,
∵直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),且|AB|=2$\sqrt{3}$,
∴圓心(0,a)到直線y=x+2a的距離d=$\frac{\left|a\right|}{\sqrt{2}}$,
即$\frac{{a}^{2}}{2}$+3=a2+2,
解得:a2=2,
故圓的半徑r=2.
故圓的面積S=4π,
故答案為:4π

點(diǎn)評 本題考查的知識點(diǎn)是直線與圓相交的性質(zhì),點(diǎn)到直線的距離公式,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的一個通項(xiàng)公式為$\frac{{n}^{2}+n+1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(Ⅰ)求∠B的大;
(Ⅱ)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1過點(diǎn)A(2,0),B(0,1)兩點(diǎn).
(1)求橢圓C的方程及離心率;
(2)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的函數(shù)為( 。
A.y=2sin(2x+$\frac{π}{4}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{4}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(x-2)ex+a(x-1)2
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)有兩個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個由半球和四棱錐組成的幾何體,其三視圖如圖所示.則該幾何體的體積為(  )
A.$\frac{1}{3}$+$\frac{2}{3}$πB.$\frac{1}{3}$+$\frac{\sqrt{2}}{3}$πC.$\frac{1}{3}$+$\frac{\sqrt{2}}{6}$πD.1+$\frac{\sqrt{2}}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{0}&{-2}\end{array}]$,矩陣B的逆矩陣B-1=$[\begin{array}{l}{1}&{-\frac{1}{2}}\\{0}&{2}\end{array}]$,求矩陣AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,AB是圓的直徑,弦CD與AB相交于點(diǎn)E,BE=2AE=2,BD=ED,則線段CE的長為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案