A. | ac<bc | B. | abc<bac | C. | alogbc<blogac | D. | logac<logbc |
分析 根據(jù)已知中a>b>1,0<c<1,結(jié)合對數(shù)函數(shù)和冪函數(shù)的單調(diào)性,分析各個(gè)結(jié)論的真假,可得答案.
解答 解:∵a>b>1,0<c<1,
∴函數(shù)f(x)=xc在(0,+∞)上為增函數(shù),故ac>bc,故A錯(cuò)誤;
函數(shù)f(x)=xc-1在(0,+∞)上為減函數(shù),故ac-1<bc-1,故bac<abc,即abc>bac;故B錯(cuò)誤;
logac<0,且logbc<0,logab<1,即$\frac{{log}_{c}b}{{log}_{c}a}$=$\frac{{log}_{a}c}{{log}_c}$<1,即logac>logbc.故D錯(cuò)誤;
0<-logac<-logbc,故-blogac<-alogbc,即blogac>alogbc,即alogbc<blogac,故C正確;
故選:C
點(diǎn)評 本題考查的知識點(diǎn)是不等式的比較大小,熟練掌握對數(shù)函數(shù)和冪函數(shù)的單調(diào)性,是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{36}{65}$ | B. | -$\frac{3}{13}$ | C. | $\frac{4}{13}$ | D. | $\frac{48}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | 99 | C. | 98 | D. | 97 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-1,3) | C. | (1,+∞) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x | B. | y=lgx | C. | y=2x | D. | y=$\frac{1}{\sqrt{x}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com