20.△ABC中,若A=60°,$a=\sqrt{3}$,則$\frac{a+b}{sinA+sinB}$=2.

分析 由已知利用比例的性質(zhì),正弦定理即可計算得解.

解答 解:∵A=60°,$a=\sqrt{3}$,
∴$\frac{a+b}{sinA+sinB}$=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2.
故答案為:2.

點評 本題主要考查了比例的性質(zhì),正弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=3•2x+3的定義域為[-1,2],則值域為[$\frac{9}{2}$,15].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在海港A正東78nmile處有一小島B,現(xiàn)甲船從A港出發(fā)以30nmile/h的速度駛向B島,同時乙船以12nmile/h的速度向北偏西30°的方向駛離B島,不久之后,丙船則向正東向從B島駛出,當(dāng)甲乙兩船相距最近時,在乙船觀測發(fā)現(xiàn)丙船在乙船南偏東60°方向,問此時甲、丙兩船相距多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=aln(x+1)+x2+x,(a∈R).
(1)當(dāng)a=-1時,求函數(shù)y=f(x)的極值點;
(2)若函數(shù)y=f(x)在區(qū)間[-$\frac{1}{2}$,-$\frac{1}{3}$]存在單調(diào)遞增區(qū)間,求a的取值范圍;
(3)若函數(shù)y=f(x)有兩個極值點x1,x2,且x1<x2,求證:-$\frac{3}{8}$+$\frac{1}{6}$ln2<$\frac{f({x}_{2})-{x}_{2}}{{x}_{1}+{x}_{2}}$<-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某校文科班7名男生身高(單位:厘米)分布的莖葉圖如圖,已知7名男生的平均身高為175cm,但有一名男生的身高不清楚,只知道其末位數(shù)為x,那么x的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.要從160名學(xué)生中抽取容量為20的樣本,用系統(tǒng)抽樣法將160名學(xué)生從1~160編號.按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組應(yīng)抽出的號碼為125,則第一組中按抽簽方法確定的號碼是( 。
A.7B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在等比數(shù)列{an}中,Sn表示前n項和,若a3=2S2+3,a4=2S3+3,則公比q=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=2,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$;
(2)2sin2α-sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)如果a,b都是正數(shù),且a≠b,求證:$\frac{a}{{\sqrt}}+\frac{{\sqrt{a}}}>\sqrt{a}+\sqrt$
(2)數(shù)列{an}中,已知an>0且(a1+a2+…+an2=a13+a23+…+an3,求出a1,a2,a3,并猜想an

查看答案和解析>>

同步練習(xí)冊答案