【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).
(I)求的標(biāo)準(zhǔn)方程;
(Ⅱ)若為坐標(biāo)原點(diǎn), 是的焦點(diǎn),過點(diǎn)且傾斜角為的直線交于, 兩點(diǎn),求的面積.
【答案】(Ⅰ) ;(Ⅱ) .
【解析】試題分析:(I)將點(diǎn)坐標(biāo)代入拋物線方程求參數(shù)p,即得標(biāo)準(zhǔn)方程;(Ⅱ)根據(jù)點(diǎn)斜式寫直線方程,與拋物線聯(lián)立方程組,利用韋達(dá)定理以及弦長公式求底邊邊長,根據(jù)點(diǎn)到直線距離公式求高,最后代入三角形面積公式得面積.
試題解析:(I)依題意可設(shè)拋物線的方程是
因?yàn)閽佄锞過點(diǎn),所以,解得,
所以拋物線的方程
(Ⅱ)法一:
由(I)得,焦點(diǎn),依題意知直線的方程是,
聯(lián)立方程化簡,得
設(shè)則,
利用弦長公式得.
點(diǎn)到直線的距離,
所以的面積為.
法二:
由(I)得,焦點(diǎn),依題意知直線的方程是,
聯(lián)立方程化簡,得
設(shè)則,
采用割補(bǔ)法,則的面積為
法三:
由(I)得,焦點(diǎn),依題意知直線的方程是,
聯(lián)立方程化簡,得
設(shè)由韋達(dá)定理,得.
利用拋物線定義,得
點(diǎn)到直線的距離,
所以的面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)十九大報告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場品銷售收入為 萬元(前 年的純利潤綜合=前 年的 總收入-前 年的總支出-投資額 萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤達(dá)到最大?并求出年平均純利潤的最大值.
【答案】(1) 從第 開始盈利(2) 該廠第 年年平均純利潤達(dá)到最大,年平均純利潤最大值為 萬元
【解析】試題分析:(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2)根據(jù)公式得到,由均值不等式得到函數(shù)最值.
解析:
由題意可知前 年的純利潤總和
(1)由 ,即 ,解得
由 知,從第 開始盈利.
(2)年平均純利潤
因?yàn)?/span> ,即
所以
當(dāng)且僅當(dāng) ,即 時等號成立.
年平均純利潤最大值為 萬元,
故該廠第 年年平均純利潤達(dá)到最大,年平均純利潤最大值為 萬元.
【題型】解答題
【結(jié)束】
21
【題目】已知數(shù)列 的前 項(xiàng)和為 ,并且滿足 , .
(1)求數(shù)列 通項(xiàng)公式;
(2)設(shè) 為數(shù)列 的前 項(xiàng)和,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c滿足f'(0)=4,f'(-2)=0。
(1)求a,b的值及曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)有三個不同的零點(diǎn),求c的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為銳角三角形,命題p:不等式logcosC >0恒成立,命題q:不等式logcosC >0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)輸公司有7輛可載的型卡車與4輛可載的型卡車,有9名駕駛員,建筑某段高速公路中,此公司承包了每天至少搬運(yùn)瀝青的任務(wù),已知每輛卡車每天往返的次數(shù)為型車8次, 型車6次,每輛卡車每天往返的成本費(fèi)為型車160元, 型車252元,每天派出型車和型車各多少輛,公司所花的成本費(fèi)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上單調(diào)遞增,試求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個動點(diǎn),平面交棱于點(diǎn).給出下列命題:
①存在點(diǎn),使得//平面;
②對于任意的點(diǎn),平面平面;
③存在點(diǎn),使得平面;
④對于任意的點(diǎn),四棱錐的體積均不變.
其中正確命題的序號是______.(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定長為2的線段AB的兩個端點(diǎn)在以點(diǎn)(0, )為焦點(diǎn)的拋物線x2=2py上移動,記線段AB的中點(diǎn)為M,求點(diǎn)M到x軸的最短距離,并求此時點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)
①若直線,則在平面內(nèi),一定不存在與直線平行的直線.
②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi),一定存在與直線垂直的直線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com