分析 (1)推導出BB1⊥底面ABC,AC⊥BB1,AC⊥BF,由此能證明AC⊥平面BB1C1C.
(2)以C為原點,CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標系,利用向量法能求出二面角A1-B1C-B的余弦值.
解答 證明:(1)∵矩形ABB1A1的對角線相交于點G,且側面ABB1A1⊥平面ABC,
∴BB1⊥底面ABC,
∵AC?平面ABC,∴AC⊥BB1,
∵F為CB1上的點,且BF⊥平面AB1C,AC?平面AB1C,
∴AC⊥BF,
∵BB1∩BF=B,
∴AC⊥平面BB1C1C.
解:(2)以C為原點,CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標系,
A1(2,0,2),B1(0,2,2),C(0,0,0),
$\overrightarrow{C{A}_{1}}=(2,0,2)$,$\overrightarrow{C{B}_{1}}$=(0,2,2),
設平面A1B1C的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{A}_{1}}=2x+2z=0}\\{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=2y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-1),
平面B1CB的法向量$\overrightarrow{m}$=(1,0,0),
設二面角A1-B1C-B的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角A1-B1C-B的余弦值為$\frac{\sqrt{3}}{3}$.
點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com