15.如圖所示,在三棱柱ABC-A1B1C1中,矩形ABB1A1的對角線相交于點G,且側面ABB1A1⊥平面ABC,AC=CB=BB1=2,F(xiàn)為CB1上的點,且BF⊥平面AB1C.
(1)求證:AC⊥平面BB1C1C;
(2)求二面角A1-B1C-B的余弦值.

分析 (1)推導出BB1⊥底面ABC,AC⊥BB1,AC⊥BF,由此能證明AC⊥平面BB1C1C.
(2)以C為原點,CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標系,利用向量法能求出二面角A1-B1C-B的余弦值.

解答 證明:(1)∵矩形ABB1A1的對角線相交于點G,且側面ABB1A1⊥平面ABC,
∴BB1⊥底面ABC,
∵AC?平面ABC,∴AC⊥BB1,
∵F為CB1上的點,且BF⊥平面AB1C,AC?平面AB1C,
∴AC⊥BF,
∵BB1∩BF=B,
∴AC⊥平面BB1C1C.
解:(2)以C為原點,CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標系,
A1(2,0,2),B1(0,2,2),C(0,0,0),
$\overrightarrow{C{A}_{1}}=(2,0,2)$,$\overrightarrow{C{B}_{1}}$=(0,2,2),
設平面A1B1C的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{A}_{1}}=2x+2z=0}\\{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=2y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-1),
平面B1CB的法向量$\overrightarrow{m}$=(1,0,0),
設二面角A1-B1C-B的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角A1-B1C-B的余弦值為$\frac{\sqrt{3}}{3}$.

點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC的三個內(nèi)角A,B,C所對的邊長分別為a,b,c,G為三角形的重心,且滿足a$\overrightarrow{GA}$+b$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,則角C=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ln(x+1)+ln(1-x)+a(x+1)(a>0).
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(-1,0]上的最大值為1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=2,AA1=3,求:
(1)三棱錐B1-ABC的體積;
(2)求二面角B1-AC-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知三棱錐A-BCD的各棱長均為2,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知四棱錐P一OABC中,PO=3,OA=$\sqrt{7}$,AB=BC=4,PO⊥面OABC,PB⊥BC,且PB與平面OABC所成角為30°,求面APB與面CPB所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在半徑為$10\sqrt{3}(m)$的半圓形(其中O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點C、D在圓弧上,點A、B在半圓的直徑上,現(xiàn)將此矩形鋁皮ABCD卷成一個以BC為母線的圓柱形罐子的側面(注:不計剪裁和拼接損耗),設矩形的邊長BC=x(m),圓柱的側面積為S(m2)、體積為V(m3),
(1)分別寫出圓柱的側面積S和體積V關于x的函數(shù)關系式;
(2)當x為何值時,才能使得圓柱的側面積S最大?
(3)當x為何值時,才能使圓柱的體積V最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90°,△PAB,△PAD,都是邊長為2的等邊三角形.
(Ⅰ)證明:平面PDB⊥平面ABCD;
(Ⅱ)求點C到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知A是拋物線C:y2=2px(p>0)上一個動點,且點A到直線l:x-2y+13=0的最短距離是$\sqrt{5}$,過直線l上一點B(3,8)作拋物線C的兩條切線,M,N為切點.
(Ⅰ)求拋物線C的方程;
(Ⅱ)求$\overrightarrow{BM}$•$\overrightarrow{BN}$的值.

查看答案和解析>>

同步練習冊答案