【題目】如圖,在底面是菱形的四棱柱中,,,點(diǎn)上.

(1)證明:平面

(2)當(dāng)為何值時(shí),平面,并求出此時(shí)直線(xiàn)與平面之間的距離.

【答案】(1)證明見(jiàn)解析;(2)當(dāng),平面,.

【解析】

試題(1)利用線(xiàn)面垂直的判定定理進(jìn)行證明;(2)連結(jié),當(dāng)點(diǎn)的中點(diǎn)時(shí),連結(jié),則,得出平面,利用等體積法求出直線(xiàn)與平面之間的距離.

試題解析:(1)證明:因?yàn)榈酌?/span>為菱形,,所以

中,由,

同理

又因?yàn)?/span>,所以平面

2)解:當(dāng)時(shí),平面.證明如下:

連結(jié),當(dāng)時(shí),即點(diǎn)的中點(diǎn)時(shí),連結(jié),則,

所以平面,

所以直線(xiàn)與平面之間的距離等于點(diǎn)到平面的距離.

因?yàn)辄c(diǎn)的中點(diǎn),可轉(zhuǎn)化為到平面的距離,,

設(shè)的中點(diǎn)為,連結(jié),則

所以平面,且,可求得,

所以,

,,,

所以表示點(diǎn)到平面的距離),,

所以直線(xiàn)與平面之間的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,,點(diǎn)E的中點(diǎn),點(diǎn)F在邊上移動(dòng).

(Ⅰ)若F中點(diǎn),求證:平面;

(Ⅱ)求證:;

(Ⅲ)若二面角的余弦值等于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子公司新開(kāi)發(fā)一電子產(chǎn)品,該電子產(chǎn)品的一個(gè)系統(tǒng)G有3個(gè)電子元件組成,各個(gè)電子元件能否正常工作的概率均為,且每個(gè)電子元件能否正常工作相互獨(dú)立.若系統(tǒng)C中有超過(guò)一半的電子元件正常工作,則G可以正常工作,否則就需要維修,且維修所需費(fèi)用為500元.

(1)求系統(tǒng)不需要維修的概率;

(2)該電子產(chǎn)品共由3個(gè)系統(tǒng)G組成,設(shè)E為電子產(chǎn)品需要維修的系統(tǒng)所需的費(fèi)用,求的分布列與期望;

(3)為提高G系統(tǒng)正常工作概率,在系統(tǒng)內(nèi)增加兩個(gè)功能完全一樣的其他品牌的電子元件,每個(gè)新元件正常工作的概率均為,且新增元件后有超過(guò)一半的電子元件正常工作,則C可以正常工作,問(wèn):滿(mǎn)足什么條件時(shí),可以提高整個(gè)G系統(tǒng)的正常工作概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求曲線(xiàn)處切線(xiàn)的斜率;

2)求的單調(diào)區(qū)間;

3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,,四邊形為平行四邊形,,為線(xiàn)段的中點(diǎn),點(diǎn)滿(mǎn)足.

(Ⅰ)求證:直線(xiàn)平面

(Ⅱ)求證:平面平面

(Ⅲ)若平面平面,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過(guò)程中(平面和平面不重合),下面說(shuō)法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過(guò)程中,平面恒成立

D.在翻折的過(guò)程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),().

1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,求實(shí)數(shù)am的值;

2)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論;

3)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若無(wú)窮數(shù)列滿(mǎn)足:,且對(duì)任意,(s,k,l)都有,則稱(chēng)數(shù)列為“T”數(shù)列.

1)證明:正項(xiàng)無(wú)窮等差數(shù)列是“T”數(shù)列;

2)記正項(xiàng)等比數(shù)列的前n項(xiàng)之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;

3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項(xiàng)之和滿(mǎn)足,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案