已知全集U=R,A={x|3x-7≥8-2x},B={x|x≥m-1},
(1)求∁UA;
(2)若A⊆B,求實數(shù)m的取值范圍.
考點:集合的包含關(guān)系判斷及應(yīng)用,補集及其運算
專題:計算題,集合
分析:(1)化簡集合A={x|3x-7≥8-2x}={x|x≥3},從而求補集;
(2)由A⊆B知m-1≤3,從而解得.
解答: 解:(1)∵A={x|3x-7≥8-2x}={x|x≥3},
又全集U=R,
∴∁UA={x|x<3};
(2)∵B={x|x≥m-1},且A⊆B,
∴m-1≤3,
∴m≤4,
實數(shù)m的取值范圍是{m|m≤4}.
點評:本題考查了集合的化簡與運算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某廠2014年初用36萬元購進(jìn)一生產(chǎn)設(shè)備,并立即投入生產(chǎn),該生產(chǎn)設(shè)備第一年維修保養(yǎng)費用4萬元,從第二年開始,每年所需維修保養(yǎng)費用比上一年增加2萬元,該生產(chǎn)設(shè)備使用后,每年的年收入為23萬元,該生產(chǎn)設(shè)備使用戈年后的總盈利額為y萬元.問:
(I)從第幾年開始,該廠開始盈利(總盈利額為正值);
(Ⅱ)到哪一年,年平均盈利額能達(dá)到最大值?此時工廠共獲利多少萬元?
(前x年的總盈利額=前x年的總收入一前x年的總維修保養(yǎng)費用一購買設(shè)備的費用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對一切x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0.
(1)判斷f(x)的奇偶性,并說明理由;
(2)證明f(x)在R上是減函數(shù);
(3)若關(guān)于t的方程f(t2-3t)+f(t2-k=0)在[0,2]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合A={α|α=120°+k•360°,k∈Z}中,屬于區(qū)間(-360°,360°)的角的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若,
AB
=(-2,4),
AC
=(4,6),則
1
2
BC
=( 。
A、,(1,5)
B、,(3,1)
C、,(6,2)
D、,(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x<6},B={x|2<x<9}
(1)求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求實數(shù)a的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx.
(Ⅰ)若f(α)=
1
3
,且α為第二象限角,計算:cos2α
1-sinα
1+sinα
+sin2α
1-cosα
1+cosα
;
(Ⅱ)若函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于直線x=
π
3
對稱,求函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)求導(dǎo)正確的是( 。
A、(x2)′=x
B、(
1
x
)′=-
1
x2
C、(
x
)′=
1
x
D、(ln3)′=
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,且bsinA=
3
acosB
(I)求角B的大。
(Ⅱ)若b=2,c=3a,求=2B,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案