【題目】中國古代教育要求學生掌握六藝,即禮、樂、射、御、書、數(shù).某校為弘揚中國傳統(tǒng)文化,舉行有關(guān)六藝的知識競賽.甲、乙、丙三位同學進行了決賽.決賽規(guī)則:決賽共分場,每場比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場得分之和,決賽結(jié)果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場比賽中獲得第一名,現(xiàn)有下列說法:

①每場比賽第一名得分分;

②甲可能有一場比賽獲得第二名;

③乙有四場比賽獲得第三名;

④丙可能有一場比賽獲得第一名.

則以上說法中正確的序號是______.

【答案】

【解析】

根據(jù)總分得到,根據(jù)甲得分得到,計算,,,得到每個選手的得分情況,得到答案.

根據(jù)題意:,故,

甲不是全部得到第一,故,故,即,故,.

故甲有5個第一,0個第二,1個第三;乙有1個第一,1個第二,4個第三;丙有0個第一,5個第二,1個第三.

對比選項知:③正確.

故答案為:③.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知一圓錐底面圓的直徑為3,圓錐的高為,在該圓錐內(nèi)放置一個棱長為a的正四面體,并且正四面體在該幾何體內(nèi)可以任意轉(zhuǎn)動,則a的最大值為(

A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,D的中點.

1)證明:平面;

2)若是邊長為2的正三角形,且,,平面平面.求平面與側(cè)面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋數(shù)學家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,去掉所有為1的項,依次構(gòu)成2,3,3,46,45,1010,5,6…,則此數(shù)列的前50項和為(

A.2025B.3052C.3053D.3049

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為圓錐的頂點,是圓錐底面的圓心,為底面直徑,是底面的內(nèi)接正三角形,上一點,

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1(a>b>0)的右焦點F與拋物線C2的焦點重合,C1的中心與C2的頂點重合.過F且與x軸重直的直線交C1A,B兩點,交C2C,D兩點,且|CD|=|AB|

1)求C1的離心率;

2)若C1的四個頂點到C2的準線距離之和為12,求C1C2的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,側(cè)面是邊長為的正三角形,,平面平面,把平面沿旋轉(zhuǎn)至平面的位置,記點旋轉(zhuǎn)后對應的點為(不在平面內(nèi)),、分別是的中點.

1)求證:

2)求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,則下列命題正確的是(

A.時,

B.函數(shù)3個零點

C.的解集為

D.,都有

查看答案和解析>>

同步練習冊答案