分析 (Ⅰ)求得f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(Ⅱ)當(dāng)x>0時,不等式xf(x)>x+1,化為k>$\frac{(x+1)ln(x+1)-x}{{x}^{2}}$,可令g(x)=$\frac{(x+1)ln(x+1)-x}{{x}^{2}}$,再將g(x)與$\frac{1}{2}$比較,運用單調(diào)性即可判斷;同樣討論當(dāng)-1<x<0時,可得k<$\frac{(x+1)ln(x+1)-x}{{x}^{2}}$,運用單調(diào)性即可判斷.
解答 解:(Ⅰ)當(dāng)k=1時,f(x)=$\frac{x+1}{ln(x+1)}$的導(dǎo)數(shù)為f′(x)=$\frac{ln(x+1)-1}{(ln(x+1))^{2}}$,
由f′(x)>0,可得x>e-1;由f′(x)<0,可得-1<x<0或0<x<e-1;
則f(x)的增區(qū)間為(e-1,+∞);減區(qū)間為(-1,0),(0,e-1);
(Ⅱ)當(dāng)x>0時,不等式xf(x)>x+1,
化為k>$\frac{(x+1)ln(x+1)-x}{{x}^{2}}$,
可令g(x)=$\frac{(x+1)ln(x+1)-x}{{x}^{2}}$,
由g(x)-$\frac{1}{2}$=$\frac{2(x+1)ln(x+1)-2x-{x}^{2}}{2{x}^{2}}$=$\frac{2(x+1)ln(x+1)-(x+1)^{2}+1}{2{x}^{2}}$,
由y=2(x+1)ln(x+1)-(x+1)2+1的導(dǎo)數(shù)為y′=2[ln(x+1)+1]-2(x+1)
=2[ln(x+1)-x],
由y=ln(x+1)-x的導(dǎo)數(shù)為y′=$\frac{1}{x+1}$-1=$\frac{-x}{x+1}$<0,
則x>0時,y=ln(x+1)-x遞減,
可得ln(x+1)-x<0,
即y=2(x+1)ln(x+1)-(x+1)2+1在(0,+∞)遞減,
可得g(x)-$\frac{1}{2}$<0,
則k≥$\frac{1}{2}$;
當(dāng)-1<x<0,可得k<$\frac{(x+1)ln(x+1)-x}{{x}^{2}}$,
由g(x)-$\frac{1}{2}$=$\frac{2(x+1)ln(x+1)-2x-{x}^{2}}{2{x}^{2}}$=$\frac{2(x+1)ln(x+1)-(x+1)^{2}+1}{2{x}^{2}}$,
由y=2(x+1)ln(x+1)-(x+1)2+1的導(dǎo)數(shù)為y′=2[ln(x+1)+1]-2(x+1)
=2[ln(x+1)-x],
由y=ln(x+1)-x的導(dǎo)數(shù)為y′=$\frac{1}{x+1}$-1=$\frac{-x}{x+1}$>0,
則-1<x<0時,y=ln(x+1)-x遞增,
可得ln(x+1)-x<0,
即y=2(x+1)ln(x+1)-(x+1)2+1在(-1,0)遞減,
可得g(x)-$\frac{1}{2}$<0,即g(x)<$\frac{1}{2}$,
則k≤$\frac{1}{2}$.
綜上可得實數(shù)k的取值范圍為{$\frac{1}{2}$}.
點評 本題考查導(dǎo)數(shù)的運用:求單調(diào)區(qū)間和單調(diào)性,考查不等式恒成立問題的解法,注意運用參數(shù)分離和構(gòu)造函數(shù),考查化簡整理的運算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,0]∪[$\frac{1}{2}$,+∞) | B. | (-1,0)∪($\frac{1}{2}$,+∞) | C. | [-1,0]∪($\frac{1}{2}$,+∞) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | 2 | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2015}{2}$ | B. | 1 | C. | 0 | D. | 2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x,g(x)=($\sqrt{x}}$)2 | B. | f(x)=x+2,g(x)=$\frac{x^2-4}{x-2}$ | ||
C. | f(x)=1,g(x)=x0 | D. | f(x)=|x|,g(x)=$\left\{{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ②⑤ | D. | ④⑤ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com