1.已知橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的左、右焦點分別為F1,F(xiàn)2,點P在橢圓上,若|PF2|=$\sqrt{2}$,則cos∠F1PF2=(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 利用橢圓的標(biāo)準(zhǔn)方程及其定義可得:|PF1||,再利用余弦定理即可得出.

解答 解:∵橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1,∴a=2$\sqrt{2}$,b=2=c,
∵|PF2|=$\sqrt{2}$,|PF1|+|PF2|=4$\sqrt{2}$,∴|PF1||=3$\sqrt{2}$,
∴cos∠F1PF2=$\frac{(3\sqrt{2})^{2}+(\sqrt{2})^{2}-{4}^{2}}{2×3\sqrt{2}×\sqrt{2}}$=$\frac{1}{3}$.
故選:D.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其定義、余弦定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將一個正方體金屬塊鑄造成一球體,不計損耗,則其先后表面積之比值為( 。
A.1B.$\frac{6}{π}$C.$\frac{3}{2π}$D.$\root{3}{\frac{6}{π}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將5封不同的信投入3個不同的郵筒,不同的投法共有( 。
A.53B.35C.3 種D.15 種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)y=x2-4x的定義域是{x|1≤x<5,x∈N},則其值域為( 。
A.[-3,5)B.[-4,5)C.{-4,-3,0}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若數(shù)列{an}的前n項之積等于n2+3n+2,(n∈N+),則數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我們可以利用數(shù)列{an}的遞推公式an=$\left\{\begin{array}{l}n,n為奇數(shù)時\\{a_{\frac{n}{2}}},n為偶數(shù)時\end{array}\right.$(n∈N*)求出這個數(shù)列各項的值,使得這個數(shù)列中的每一項都是奇數(shù),則a48+a49=52;研究發(fā)現(xiàn),該數(shù)列中的奇數(shù)都會重復(fù)出現(xiàn),那么第九個5是該數(shù)列的第1280項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在直三棱柱ABC-A1B1C1中,AB=3cm,BC=4cm,CA=5cm,AA1=6cm,則四棱錐A1-B1BCC1的體積為24cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,圓C的方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)把直線l化為直角坐標(biāo)方程和圓C的方程化為普通方程;
(2)求圓C上的點到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從區(qū)間[0,1]隨機抽取2n個數(shù)x1,x2,…,xn,y1,y2,…,yn,構(gòu)成n個數(shù)對(x1,y1),(x2,y2),…,(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對共有m個,則用隨機模擬的方法得到的圓周率π的近似值為$\frac{4m}{n}$.

查看答案和解析>>

同步練習(xí)冊答案