分析 由條件可得a>0,b>0,運用基本不等式可得$\frac{4}{a}$+$\frac{1}$=$\sqrt{ab}$≥2$\sqrt{\frac{4}{ab}}$,即可得到ab的最小值.
解答 解:由$\frac{4}{a}$+$\frac{1}$=$\sqrt{ab}$,可得a>0,b>0,
由$\frac{4}{a}$+$\frac{1}$=$\sqrt{ab}$≥2$\sqrt{\frac{4}{ab}}$,
即為ab≥4,
當(dāng)且僅當(dāng)a=4b=1,ab取得最小值4.
故答案為:4.
點評 本題考查最值的求法,注意運用基本不等式和不等式的性質(zhì),考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,0} | B. | {2,0} | C. | {-2,-1,0} | D. | {2,1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | C. | 相交且過圓心 | D. | 相交但不過圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 32π | C. | 64π | D. | 128π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com