【題目】已知函數(shù)f(x)=e1+|x|﹣ ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.
B.
C.(﹣ , )
D.
【答案】A
【解析】解:∵函數(shù)f(x)=e1+|x|﹣ 滿(mǎn)足f(﹣x)=f(x),
故函數(shù)f(x)為偶函數(shù),
當(dāng)x≥0時(shí),y=e1+|x|=e1+x為增函數(shù),y= 為減函數(shù),
故函數(shù)f(x)在x≥0時(shí)為增函數(shù),在x≤0時(shí)為減函數(shù),
若f(x)>f(2x﹣1),則|x|>|2x﹣1|,
即x2>4x2﹣4x+1,即3x2﹣4x+1<0,
解得:x∈ ,
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識(shí),掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為,( 為參數(shù)).
(Ⅰ)求直線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的普通方程;
(Ⅱ)曲線(xiàn)交軸于兩點(diǎn),且點(diǎn), 為直線(xiàn)上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(),,
(Ⅰ) 試求曲線(xiàn)在點(diǎn)處的切線(xiàn)l與曲線(xiàn)的公共點(diǎn)個(gè)數(shù);(Ⅱ) 若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.
(附:當(dāng),x趨近于0時(shí), 趨向于)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩焦點(diǎn)為, , 為橢圓上一點(diǎn),且到兩個(gè)焦點(diǎn)的距離之和為6.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若已知直線(xiàn),當(dāng)為何值時(shí),直線(xiàn)與橢圓有公共點(diǎn)?
(3)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(m﹣2)a﹣x (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求m的值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度v(單位:千克/年)是養(yǎng)殖密度x (單位:尾/立方米)的函數(shù).當(dāng)x不超過(guò)4尾/立方米時(shí),v的值為2千克/年;當(dāng)4<x≤20時(shí),v是x的一次函數(shù),當(dāng)x達(dá)到20尾/立方米時(shí),因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時(shí),求v關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是棱形, , 平面, ,點(diǎn)、分別為和中點(diǎn),連接, .
(1)求證:直線(xiàn)平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無(wú)雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為
(1)求及基地的預(yù)期收益;
(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無(wú)雨時(shí)收益為萬(wàn)元,有雨時(shí)收益為萬(wàn)元,且額外聘請(qǐng)工人的成本為元,問(wèn)該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com