(本小題滿分14分)
已知長方形ABCD, AB=2,BC=1.以AB的中點為原點建立如圖8所示的平面直角坐標系.
(Ⅰ)求以A、B為焦點,且過C、D兩點的橢圓的標準方程;
(Ⅱ)過點P(0,2)的直線交(Ⅰ)中橢圓于M,N兩點,是否存在直線,使得以弦MN為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.
,存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點
解:(Ⅰ)由題意可得點A,B,C的坐標分別為.……1分
設(shè)橢圓的標準方程是.……2分
……4分
.……5分
橢圓的標準方程是……6分
(Ⅱ)由題意直線的斜率存在,可設(shè)直線的方程為.……7分
設(shè)M,N兩點的坐標分別為
聯(lián)立方程: 
消去整理得,
…9分
若以MN為直徑的圓恰好過原點,則,
所以,……10分 所以,,

所以,
 ……11分得……12分
所以直線的方程為,或.……13分
所以存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點.……14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且其焦點F(c,0)(c>0)到相應(yīng)準線l的距離為3,過焦點F的直線與橢圓交于A、B兩點。
(1)求橢圓的標準方程;
(2)設(shè)M為右頂點,則直線AM、BM與準線l分別交于P、Q兩點,(P、Q兩點不重合),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的方程是,橢圓的左頂點為,離心率,傾斜角為的直線與橢圓交于、兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)向量),若點在橢圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



如圖,已知點,且的內(nèi)切圓方程為.
(1)  求經(jīng)過三點的橢圓標準方程;
(2)  過橢圓上的點作圓的切線,求切線長最短時的點的坐標和切線長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為)的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在第一象限,且是橢圓上的一點,△的內(nèi)切圓半徑是,求的坐標

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:的右焦點為F,右準線為l,點,線段AF交橢圓C于點B,若="                                                                                                                           " (   )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是以,為焦點的橢圓上的一點,若,,則此橢圓的離心率為____________.

查看答案和解析>>

同步練習(xí)冊答案