分析 先驗(yàn)證n=1時(shí)不等式成立,再假設(shè)n=k時(shí)不等式成立,推導(dǎo)n=k+1時(shí)不等式也成立即可.
解答 證明:n=1時(shí),左側(cè)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$=$\frac{13}{12}$>$\frac{25}{24}$,
∴n=1時(shí),不等式成立.
假設(shè)n=k時(shí),不等式成立,即$\frac{1}{k+1}+\frac{1}{k+2}+$…+$\frac{1}{3k+1}$≥$\frac{25}{24}$,
則n=k+1時(shí),左側(cè)=$\frac{1}{k+2}+\frac{1}{k+3}$+…$\frac{1}{3k+1}$+$\frac{1}{3k+2}$+$\frac{1}{3k+3}+\frac{1}{3k+4}$≥$\frac{25}{24}$+$\frac{1}{3k+2}$+$\frac{1}{3k+3}+\frac{1}{3k+4}$-$\frac{1}{k+1}$
=$\frac{25}{24}$+$\frac{1}{3k+2}+\frac{1}{3k+4}-\frac{2}{3k+3}$=$\frac{25}{24}+$$\frac{2}{(3k+2)(3k+3)(3k+4)}$>$\frac{25}{24}$,
∴當(dāng)n=k+1時(shí),不等式成立.
所以不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{3n+1}$≥$\frac{25}{24}$對(duì)一切正整數(shù)n都成立.
點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法證明,應(yīng)熟練掌握證明步驟,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com