【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:
(Ⅰ)請?zhí)顚懴卤恚▽懗鲇嬎氵^程):
(Ⅱ)從下列三個不同的角度對這次測試結(jié)果進行分析;
①從平均數(shù)和方差相結(jié)合看(分析誰的成績更穩(wěn)定);
②從平均數(shù)和命中9環(huán)及9環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);
③從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力)
【答案】(Ⅰ)見解析;(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)由折線圖,求出甲設計次中靶環(huán)數(shù)和乙射擊次中靶環(huán)數(shù),由此能求出結(jié)果;(Ⅱ)①由平均數(shù)相同,,知甲成績比乙穩(wěn)定;②由平均數(shù)相同,命中9環(huán)及9環(huán)以上的次數(shù)甲比乙少,知乙成績比甲好些;③乙處于上升勢頭,從第四次以后就沒有比甲少的情況發(fā)生,乙較有潛力.
試題解析:由折線圖,知
甲射擊10次中靶環(huán)數(shù)分別為:9,5,7,8,7,6,8,6,7,7.
將它們由小到大重排為:5,6,6,7,7,7,7,8,8,9.
乙射擊10次中靶環(huán)數(shù)分別為:2,4,6,8,7,7,8,9,9,10.也將它們由小到大重排為:2,4,6,7,7,8,8,9,9,10.
(Ⅰ)(環(huán)),
(環(huán))
根據(jù)以上的分析與計算填表如下:
(Ⅱ)①∵平均數(shù)相同,,
∴甲成績比乙穩(wěn)定.
②∵平均數(shù)相同,命中9環(huán)及9環(huán)以上的次數(shù)甲比乙少,
∴乙成績比甲好些.
③甲成績在平均數(shù)上下波動;而乙處于上升勢頭,從第四次以后就沒有比甲少的情況發(fā)生,乙較有潛力.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.
(1)當時,求曲線上的點到直線的距離的最大值;
(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】質(zhì)檢部門對某工廠甲、乙兩個車間生產(chǎn)的12個零件質(zhì)量進行檢測.甲、乙兩個車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過20克的為合格.
(1)從甲、乙兩車間分別隨機抽取2個零件,求甲車間至少一個零件合格且乙車間至少一個零件合格的概率;
(2)質(zhì)檢部門從甲車間8個零件中隨機抽取4件進行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;
(3)若從甲、乙兩車間12個零件中隨機抽取2個零件,用表示乙車間的零件個數(shù),求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品的保鮮時間y(單位:小時)與儲存溫度x(單位:)滿足函數(shù)關系 (k,m為常數(shù)).若該食品在0的保鮮時間是64小時,在18的保鮮時間是16小時,則該食品在36的保鮮時間是( )
A.4小時B.8小時C.16小時D.32小時
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】探究函數(shù),上的最小值,并確定取得最小值時的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 14 | 7 | 5.34 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | … |
(1)觀察表中值隨值變化趨勢特點,請你直接寫出函數(shù),的單調(diào)區(qū)間,并指出當取何值時函數(shù)的最小值為多少;
(2)用單調(diào)性定義證明函數(shù)在上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,其中, 為自然對數(shù)的底數(shù).
(1)設是函數(shù)的導函數(shù),討論的單調(diào)性;
(2)若關于的方程在上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,拋物線的焦點均在軸上, 的中心和的頂點均為原點,從, 上分別取兩個點,將其坐標記錄于下表中:
3 | -2 | 4 | ||
0 | -4 |
(1)求的標準方程;
(2)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com