分析 (1)利用三角形的相似,結(jié)合切線長(zhǎng)相等,即可證明:AB•CD=BC•AD;
(2)利用切割線定理,結(jié)合BF=EF,證明出△EFC∽△DFE,進(jìn)而證明∠EFC=∠DAC,即可得出結(jié)論.
解答 證明:(1)∵過(guò)B、D兩點(diǎn)的切線交于點(diǎn)E,
∴EB=ED,∠EBC=∠EAB,∠EDC=∠EAD
∵∠BEA=∠CEB,∠CED=∠DEA,
∴△EBC∽△EAB,△EDC∽△EAD,
∴ABBC=EAEB,ADCD=EAED,
∴ABBC=ADCD,
∴AB•CD=BC•AD;
(2)∵BF2=FC•FD,BF=EF,
∴EF2=FC•FD,
∴EFFC=FDEF,
∵∠EFC=∠DFE,
∴△EFC∽△DFE,
∴∠FEC=∠FDE,
∵∠FDE=∠EAD,
∴∠EFC=∠DAC,
∴AD∥BE.
點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查三角形相似的證明與性質(zhì)的運(yùn)用,證明三角形相似是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | S1=S2 | B. | S1≤S2 | ||
C. | S1≥S2 | D. | 先S1<S2,再S1=S2,最后S1>S2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -5 | C. | -1 | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+12 | B. | 15 | C. | 1+12+13+14+15 | D. | 非以上答案 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com