Processing math: 100%
3.如圖,圓O為四邊形ABCD的外接圓,過(guò)B、D兩點(diǎn)的切線交于點(diǎn)E,AE交圓O于點(diǎn)C.
(1)證明:AB•CD=BC•AD;
(2)延長(zhǎng)DC交BE于F,若EF=FB,證明:AD∥BE.

分析 (1)利用三角形的相似,結(jié)合切線長(zhǎng)相等,即可證明:AB•CD=BC•AD;
(2)利用切割線定理,結(jié)合BF=EF,證明出△EFC∽△DFE,進(jìn)而證明∠EFC=∠DAC,即可得出結(jié)論.

解答 證明:(1)∵過(guò)B、D兩點(diǎn)的切線交于點(diǎn)E,
∴EB=ED,∠EBC=∠EAB,∠EDC=∠EAD
∵∠BEA=∠CEB,∠CED=∠DEA,
∴△EBC∽△EAB,△EDC∽△EAD,
ABBC=EAEBADCD=EAED,
ABBC=ADCD,
∴AB•CD=BC•AD;
(2)∵BF2=FC•FD,BF=EF,
∴EF2=FC•FD,
EFFC=FDEF,
∵∠EFC=∠DFE,
∴△EFC∽△DFE,
∴∠FEC=∠FDE,
∵∠FDE=∠EAD,
∴∠EFC=∠DAC,
∴AD∥BE.

點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查三角形相似的證明與性質(zhì)的運(yùn)用,證明三角形相似是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求拋物線{x=2ty=2t2+1(t為參數(shù))的準(zhǔn)線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a+1+i1i(a∈R)是純虛數(shù),則a=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個(gè)對(duì)稱(chēng)中心為(π4,0).將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移π2個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式;
(2)定義:當(dāng)函數(shù)取得最值時(shí),函數(shù)圖象上對(duì)應(yīng)的點(diǎn)稱(chēng)為函數(shù)的最值點(diǎn),如果函數(shù)y=F(x)=3sinπxk的圖象上至少有一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn)在圓x2+y2=k2(k>0)的內(nèi)部或圓周上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知圓O與直線l相切于點(diǎn)A,點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),P沿著直線l向右、Q沿著圓周按逆時(shí)針以相同的速度運(yùn)動(dòng),當(dāng)Q運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)P也停止運(yùn)動(dòng),連接OQ,OP(如圖),則陰影部分面積S1,S2的大小關(guān)系是(  )
A.S1=S2B.S1≤S2
C.S1≥S2D.先S1<S2,再S1=S2,最后S1>S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.實(shí)數(shù)a+i2i(a為實(shí)數(shù))的共軛復(fù)數(shù)為( �。�
A.1B.-5C.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=sin(ωx+φ)(ω>0),如果存在實(shí)數(shù)x0,使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為12016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知P為△ABC所在平面上的一點(diǎn),且AP=xAB+2yAC,其中x,y∈R為實(shí)數(shù),設(shè)點(diǎn)M(x,y),點(diǎn)N(1,1),當(dāng)點(diǎn)P落在△ABC的內(nèi)部,|MN|的取值范圍是(2552).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若an=1+12+13+…+1n2+1(n∈N*),則a2等于( �。�
A.1+12B.15C.1+12+13+14+15D.非以上答案

查看答案和解析>>

同步練習(xí)冊(cè)答案