分析 (1)設(shè)第n(n∈N*)個(gè)正方形的邊長(zhǎng)為an,則其內(nèi)切圓半徑為$\frac{a_n}{2}$,第n+1個(gè)正方形的邊長(zhǎng)為$\frac{{\sqrt{2}}}{2}{a_n}$,其內(nèi)切圓半徑為$\frac{{\sqrt{2}}}{4}{a_n}$,然后求解Sn+1與${S_n}(n∈{N^*})$的遞推關(guān)系式.
(2)求出前n項(xiàng)和,利用等比數(shù)列求和化簡(jiǎn)求解即可.
解答 解:(1)設(shè)第n(n∈N*)個(gè)正方形的邊長(zhǎng)為an,則其內(nèi)切圓半徑為$\frac{a_n}{2}$,
第n+1個(gè)正方形的邊長(zhǎng)為$\frac{{\sqrt{2}}}{2}{a_n}$,其內(nèi)切圓半徑為$\frac{{\sqrt{2}}}{4}{a_n}$,
所以${S_n}=a_n^2-π{(\frac{a_n}{2})^2}=a_n^2(1-\frac{π}{4})$,
${S_{n+1}}={(\frac{{\sqrt{2}}}{2}{a_n})^2}-π{(\frac{{\sqrt{2}}}{4}{a_n})^2}=a_n^2(\frac{1}{2}-\frac{π}{8})=\frac{1}{2}{S_n}$,(n∈N*).
(2)由(1)${S_1}=(1-\frac{π}{4})$,${S_2}=(\frac{1}{2}-\frac{π}{8})$,…,${S_n}=(1-\frac{π}{4}){(\frac{1}{2})^{n-1}}$,
得Tn=S1+S2+…+Sn=$(1-\frac{π}{4})(1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}})$=$(2-\frac{π}{2})(1-\frac{1}{2^n})(n∈{N^*})$.
點(diǎn)評(píng) 本題考查數(shù)列的應(yīng)用,數(shù)列的遞推關(guān)系式以及數(shù)列求和,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24-π | B. | 24-3π | C. | 24+π | D. | 24-2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -5 | B. | 6 | C. | -10 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4+2$\sqrt{3}$i | B. | -2+2$\sqrt{3}$i | C. | 4-2$\sqrt{3}$i | D. | -2-2$\sqrt{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ln2 | B. | 0 | C. | 1 | D. | 1-ln2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com