5.已知函數(shù)$f(x)=\frac{1}{a}-\frac{1}{x};(a>0)$.
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實(shí)數(shù)a使得f(x)的定義域、值域都是$[{\frac{1}{2},2}]$,若存在求出a的值,若不存在說明理由.

分析 (1)根據(jù)函數(shù)的單調(diào)性的定義證明即可;
(2)根據(jù)函數(shù)的單調(diào)性得到關(guān)于a的方程組,解出即可.

解答 (1)證明:設(shè)x2>x1>0,
則f(x2)-f(x1)=($\frac{1}{a}$-$\frac{1}{{x}_{2}}$)-($\frac{1}{a}$-$\frac{1}{{x}_{1}}$)=$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$=$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$,
∵x2>x1>0,∴x2-x1>0,
∴$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$>0,即f(x2)>f(x1),
∴f(x)在(0,+∞)遞增;
(2)解:∵f(x)在(0,+∞)遞增,
且定義域和值域均是[$\frac{1}{2}$,2],
∴$\left\{{\begin{array}{l}{f(\frac{1}{2})=\frac{1}{a}-2=\frac{1}{2}}\\{f(2)=\frac{1}{a}-\frac{1}{2}=2}\end{array}}\right.$,
所以存在實(shí)數(shù)$a=\frac{2}{5}$.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的圖象經(jīng)過點(diǎn)P(-$\frac{π}{12}$,0),與點(diǎn)P相鄰的最高點(diǎn)Q($\frac{π}{6}$,2).
(1)求φ和ω的值.
(2)當(dāng)x∈(-$\frac{π}{2}$,0)時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求函數(shù)f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
(2)證明:不等式x1-x+(1-x)x≤$\sqrt{2}$,在0<x<1上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,平面EAD⊥平面ABCD,△ADE是等邊三角形,ABCD是矩形,F(xiàn)是AB的中點(diǎn),P是O的中點(diǎn),O是PQ的中點(diǎn),EC與平面ABCD成30°角.
(1)求證:EG⊥平面ABCD;
(2)求證:HF∥平面EAD;
(3)若AD=4,求三棱錐D-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\left\{\begin{array}{l}lg|x-2|(x≠2)\\ 1(x=2)\end{array}\right.$若關(guān)于x的方程[f(x)]2+b•f(x)+c=0恰有5個不同的實(shí)數(shù)解x1、x2、x3、x4、x5,則f(x1+x2+x3+x4+x5)等于(  )
A.0B.1C.lg4D.3lg2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若函數(shù)y=f(x)ex在x=-1處取得極值,則下列圖象不可能為y=f(x)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知焦點(diǎn)在x軸上的橢圓E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{^{2}}$=1(b>0)
(1)若0<b≤2,求離心率e的取值范圍;
(2)橢圓E內(nèi)含圓C:x2+y2=$\frac{8}{3}$.圓C的切線l與橢圓E交于A,B兩點(diǎn),滿足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O為坐標(biāo)原點(diǎn)).
①求b2的值;
②求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.等腰直角三角形的直角邊長為1,則繞直角邊旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)所有向量的一組基底,那么( 。
A.該平面內(nèi)存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n為實(shí)數(shù)
B.若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$與$\overrightarrow a$共線,則存在唯一實(shí)數(shù)λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$
C.若實(shí)數(shù)m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,則m=n=0
D.對平面中的某一向量$\overrightarrow a$,存在兩對以上的實(shí)數(shù)m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$

查看答案和解析>>

同步練習(xí)冊答案