3.對(duì)于二次函數(shù)f(x)=-2x2+8x-3
(1)指出圖象的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo);
(2)說明其圖象由f(x)=-2x2的圖象經(jīng)過怎樣平移得到.

分析 (1)利用函數(shù)的解析式直接求解圖象的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo);
(2)通過配方,利用函數(shù)的圖象的平移寫出結(jié)果即可.

解答 解:(1)二次函數(shù)f(x)=-2x2+8x-3的圖象的開口方向向下、對(duì)稱軸x=2、頂點(diǎn)坐標(biāo)(2,5);
(2)f(x)=-2x2+8x-3=-2(x-2)2+5,
其圖象由f(x)=-2x2的圖象向右平移2個(gè)單位,向上平移5個(gè)單位得到的.

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì),函數(shù)的圖象的平移變換,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{e^x}{sinx}$
(1)求函數(shù)f(x)的增區(qū)間;
(2)對(duì)于任意的$x∈[\frac{π}{4},\frac{π}{2}]$,總有f(x)≥$\frac{ax}{{{{sin}^2}x}}$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a2=1,且其前n項(xiàng)和為${S_n}={n^2}-pn$
(1)求實(shí)數(shù)p的值及數(shù)列{an}的通項(xiàng)公式
(2)若數(shù)列{bn}為等比數(shù)列,公比為p,{bn}前n項(xiàng)和為Tn,且T5<S5,求b1取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.復(fù)數(shù)z=$\frac{1+i}{i}$,$\overline z$是它的共軛復(fù)數(shù),則$z•\overline z$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)$y={log_{\frac{1}{2}}}({-{x^2}+2x+1})$(x∈[0,$\sqrt{2}$])的值域是-[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x,y滿足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值是m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{4}$的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是(  )
A.異面直線所成的角范圍是[0,π]
B.命題“?x∈R,2x>0”的否定是“?x∈R,2x>0”
C.若p∧q為假命題,則p,q均為假命題
D.x2>1成立的一個(gè)充分而不必要的條件是x>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若對(duì)任意x∈[2,4]及y∈[2,3],該不等式xy≤ax2+2y2恒成立,則實(shí)數(shù)a的范圍是a≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ為常數(shù),且0<λ<1
(I)求函數(shù)f(x)的極值;
(II)證明:對(duì)?a∈R+,?x∈R+,使得不等式|$\frac{g(x)-1}{x}-1$|<a成立;
(III)設(shè)λ1,λ2∈R+,且λ12=1,證明:對(duì)?a1,a2∈R+,都有a1λ1a2λ2≤λ1a12a2

查看答案和解析>>

同步練習(xí)冊(cè)答案