分析 (1)由題意,得S1=1-p,S2=4-2p,利用a2=1,S2=a1+a2,可得S2=4-2p=1-p+1,即可求p的值;再寫(xiě)一式,兩式相減,即可求出數(shù)列{an}的通項(xiàng)公式;
(2)求出Tn,利用T5<S5,建立不等式,注意b1≠0,即可求b1的取值范圍.
解答 解:(1)由題意,得S1=1-p,S2=4-2p,
因?yàn)閍2=1,S2=a1+a2,
所以 S2=4-2p=1-p+1,
解得 p=2.
所以Sn=n2-2n.
當(dāng)n≥2時(shí),由an=Sn-Sn-1,
得an=n2-2n-(n-1)2+2(n-1)=2n-3
驗(yàn)證知n=1時(shí),a1=-1符合上式,
所以an=2n-3,n∈N*.
(2)由數(shù)列{bn}為等比數(shù)列,公比為2,
得Tn=$\frac{_{1}(1-{2}^{n})}{1-2}$=b1(2n-1).
因?yàn)門(mén)5<S5,
所以b1(25-1)<52-2×5.
又因?yàn)閎1≠0,
解得b1<0或0<b1<$\frac{15}{31}$.
所以b1的取值范圍是(-∞,0)∪(0,$\frac{15}{31}$).
點(diǎn)評(píng) 本題考查數(shù)列的遞推式和應(yīng)用,考查數(shù)列的通項(xiàng)與求和,確定數(shù)列的通項(xiàng)是關(guān)鍵,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2] | B. | [2,+∞) | C. | (-∞,1) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<k<1 | B. | k>1 | C. | $\frac{3}{4}$<k<1 | D. | k>1或k=$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x2+1 | B. | y=3-2x | C. | $y=\frac{1}{x}$ | D. | y=-x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com