分析 (1)證明:CD⊥AB,AA1⊥CD,即可證明CD⊥平面ABB1A1;
(2)證明OD∥AC1,即可證明OD∥平面AC1E.
解答 證明:(1)因?yàn)锳C=BC,D是線段AB的中點(diǎn),
所以CD⊥AB,…(2分)
又AA1⊥底面ABC,所以AA1⊥CD,…(4分)
又AB∩AA1=A,所以CD⊥平面ABB1A1,…(6分)
(2)易知四邊形BCC1B1為平行四邊形,則O為BC1的中點(diǎn),…(8分)
又D是線段AB的中點(diǎn),所以O(shè)D∥AC1,…(10分)
而OD?平面AC1E,AC1?平面AC1E,所以O(shè)D∥平面AC1E…(12分)
點(diǎn)評 本題考查線面垂直、平行的判定,考查學(xué)生分析解決問題的能力,正確運(yùn)用相關(guān)定理是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<0 | B. | a<b | C. | b(a-b)>0 | D. | a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 2 | D. | -1或0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com