【題目】設(shè).
(I)求的單調(diào)區(qū)間和最小值;
(II)討論與的大小關(guān)系;
(III)求的取值范圍,使得對(duì)任意恒成立.
【答案】(1)單增區(qū)間為,單減區(qū)間為, 的最小值是;(2)見(jiàn)解析(3)
【解析】試題分析:(1)根據(jù)條件易知,求導(dǎo),從而可知是的單調(diào)減區(qū)間, 是的單調(diào)遞增區(qū)間, 的最小值為;(2)構(gòu)造函數(shù),則,從而在遞減,而,從而當(dāng),,,當(dāng)時(shí),,;(3)根據(jù)題意可知恒成立等價(jià)于,由(1)可知,即解不等式,從而解得.
試題解析:(1)∵, ,∴,∴,令,得,當(dāng)時(shí), , 是減函數(shù),故是的單調(diào)減區(qū)間,當(dāng)時(shí), , 是增函數(shù),故是的單調(diào)遞增區(qū)間,∴是的唯一極值點(diǎn),且為極小值點(diǎn),從而是最小值點(diǎn),∴的最小值為;
(2),設(shè), ,在遞減,
當(dāng), ,即,當(dāng),,,當(dāng)時(shí),,;
(3)由(1)知的最小值為,∴,對(duì)任意成立等價(jià)于,
即,從而得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題: ①函數(shù) 的一條對(duì)稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).
以上五個(gè)命題中正確的有(填寫(xiě)所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O的方程為x2+y2=4,P是圓O上的一個(gè)動(dòng)點(diǎn),若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實(shí)數(shù)a的取值范圍是( )
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,奇函數(shù)的個(gè)數(shù)為( ) ①y=x2sinx ②y=sinx , x∈ ③y=xcosx , x∈ ④y=tanx .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,最小正周期是π且在區(qū)間 上是增函數(shù)的是( )
A.y=sin2x
B.y=sinx
C.y=tan
D.y=cos2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2﹣ax(a∈R)
(1)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤2x2恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證;lnn> + +1 +…+ (n∈N+)且n≥2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求證{an+3}是等比數(shù)列
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),f(0)=0,當(dāng)x>0時(shí),f(x)=log x.
(1)求 f(﹣4)的函數(shù)值;
(2)求函數(shù)f(x)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com