【題目】函數(shù)f(x)是定義在R上的偶函數(shù),f(0)=0,當(dāng)x>0時(shí),f(x)=log x.
(1)求 f(﹣4)的函數(shù)值;
(2)求函數(shù)f(x)的解析式.
【答案】
(1)解:∵f(﹣4)=f(4)= =﹣2
(2)解:當(dāng)x<0時(shí),﹣x>0,
則f(﹣x)= ,
∵函數(shù)f(x)是偶函數(shù),
∴f(﹣x)=f(x),
∴f (x)=log (﹣x).
∴函數(shù)f(x)的解析式為f(x)=
【解析】(1)利用f(﹣4)=f(4),代入解析式求值;(2)設(shè)x<0,則﹣x>0,得到f(﹣x),利用函數(shù)為偶函數(shù),得到x<0時(shí)的解析式,最后表示R上的解析式.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的值,需要了解函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(I)求的單調(diào)區(qū)間和最小值;
(II)討論與的大小關(guān)系;
(III)求的取值范圍,使得對任意恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 已知曲線y=f(x)
在處的切線與直線垂直。
(1) 求的值;
(2) 若對任意x≥1,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓上一點(diǎn), 分別為的左、右焦點(diǎn), , , 的面積為.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn),記直線的斜率分別為,當(dāng)最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ﹣ ),求實(shí)數(shù)k的值;
(Ⅱ)設(shè) =(x,y),且滿足( + )⊥( ﹣ ),| ﹣ |= ,求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線過點(diǎn), .
(1)若,求函數(shù)的極值點(diǎn);
(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=4.
(1)直線l1: 與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1 , y1)、P(x2 , y2)是圓O上的兩個(gè)動點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對稱點(diǎn)為M1 , 點(diǎn)M關(guān)于x軸的對稱點(diǎn)為M2 , 如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問mn是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com