【題目】已知函數(shù).

1)當時,討論函數(shù)的單調(diào)性;

2)當時,對于任意正實數(shù),不等式恒成立,試判斷實數(shù)的大小關(guān)系.

【答案】1減;(2

【解析】

1)求出導(dǎo)數(shù)再討論a即可判斷單調(diào)性.(2)設(shè)gx)=fx)﹣b,x0,求導(dǎo)數(shù)判斷單調(diào)性求出極值,轉(zhuǎn)化為gxmax0即可.

1f′(x,x0

f′(x)=0得,xe,

在(0e)上,f′(x)>0,即fx)單調(diào)遞增;

在(e,+∞)上,f′(x)<0,即fx)單調(diào)遞減.

fx)在(0,e)單調(diào)遞增,在(e,+∞)上單調(diào)遞減,

2)當a0時,設(shè)gx)=fx)﹣b,x0

g′(x,

g′(x)=0,得x1,

0x1時,g′(x)>0,即gx)單調(diào)遞增,

x1時,g′(x)<0,即gx)單調(diào)遞減,

gxmaxg1)=ab

要使不等式恒成立,

只需gxmax0,

ab0,

ab

故實數(shù)ab的大小關(guān)系為:ab

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個極值點,則實數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=4cosωxsinωx)(ω0)的最小正周期是π

1)求函數(shù)fx)在區(qū)間(0π)上的單調(diào)遞增區(qū)間;

2)若fx0x0[,],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)tan(ωxφ)(ω>0,0<φ<),已知函數(shù)yf(x)的圖象與x軸相鄰兩個交點的距離為,且圖象關(guān)于點M(,0)對稱.

(1)f(x)的解析式;

(2)f(x)的單調(diào)區(qū)間;

(3)求不等式-1≤f(x)≤的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù)

(Ⅰ)求值;

(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;

(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(Ⅳ)設(shè)關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù),,,的平均值為2,方差為1,則數(shù)據(jù),,相對于原數(shù)據(jù)( )

A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,要測量山頂上的電視塔FG的高度,已知山的西面有一棟樓AC(該樓的高度低于山的高度).試設(shè)計在樓AC上測山頂電視塔高度的測量、計算方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有五個不同的實數(shù)根,則 的取值范圍是( )

A.(0,+∞)B.(0,1)C.(-∞,0)D.(0,

查看答案和解析>>

同步練習(xí)冊答案