16.已知數(shù)列{an}是首項為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列,數(shù)列{bn}滿足bn=log2$\frac{1}{a_n}$,則數(shù)列{anbn}的前n項和為( 。
A.$\frac{{{2^{n+1}}-n-2}}{2^n}$B.$\frac{{{2^{n+1}}-n-2}}{{{2^{n+1}}}}$C.$\frac{{{2^{n+1}}-n-1}}{2^n}$D.$\frac{{{2^{n+1}}-n-1}}{{{2^{n+1}}}}$

分析 求出數(shù)列{an}、數(shù)列{bn}的通項公式代入anbn,利用錯位相減法求得其前n項和Sn

解答 解:∵數(shù)列{an}是首項為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列,
∴an=$\frac{1}{{2}^{n}}$,
∴bn=log2$\frac{1}{a_n}$=n,
∴anbn=n•$\frac{1}{{2}^{n}}$,
∴Sn=1•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+(n-1)•($\frac{1}{2}$)n-1+n•($\frac{1}{2}$)n.①
$\frac{1}{2}$Sn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+3•($\frac{1}{2}$)4+…+(n-1)•($\frac{1}{2}$)n+n•($\frac{1}{2}$)n+1.②
①-②得$\frac{1}{2}$Sn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=1-(1+$\frac{n}{2}$)•($\frac{1}{2}$)n,
∴Sn=$\frac{{2}^{n+1}-n-2}{{2}^{n}}$
故選:A.

點評 考查等差數(shù)列和等比數(shù)列的通項公式、錯位相減法求數(shù)列的前項和Sn,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.在(x-$\frac{2}{\sqrt{x}}$)7的二項展開式中,x4的系數(shù)為84(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.過橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點F作傾斜角為60°的直線l與橢圓C交于A,B兩點,則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0(m>0).若“非p”是“非q”的充分不必要條件,則實數(shù)m的取值范圍為(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}的前n項和為Sn,且a1=1,2Sn=an•an+1(n∈N*).若bn=(-1)n$\frac{2n+1}{{a}_{n}•{a}_{n+1}}$,則數(shù)列{bn}的前n項和Tn=-1+$\frac{(-1)^{n}}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知A(1,2),B(3,-1),C(3,4),則$\overrightarrow{AB}$•$\overrightarrow{AC}$=( 。
A.-2B.-1C.5D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設F1、F2是雙曲線x2-4y2=4的兩個焦點,P在雙曲線上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow n$與向量$\overrightarrow m$的夾角為$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow q=(1,0)$,且$|{\overrightarrow q+\overrightarrow n}|=|{\overrightarrow q-\overrightarrow n}|$,向量$\overrightarrow p=(cosA\;,\;2{cos^2}\frac{C}{2})$,其中A,B,C為△ABC的內(nèi)角且有A+C=2B,求$|{\overrightarrow n+\overrightarrow p}|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若直線l∥平面α,直線a?平面α,則l與a(  )
A.平行B.異面C.相交D.沒有公共點

查看答案和解析>>

同步練習冊答案