13.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點(diǎn),E為CD中點(diǎn),過(guò)M,N作平面MNPQ分別與BC,AD交于點(diǎn)P,Q,若$\overrightarrow{DQ}$=t$\overrightarrow{DA}$.
(1)當(dāng)t=$\frac{1}{2}$時(shí),求證:平面SAE⊥平面MNPQ;
(2)是否存在實(shí)數(shù)t,使得二面角M-PQ-A的平面角的余弦值為$\frac{\sqrt{5}}{5}$?若存在,求出實(shí)數(shù)t的值;若不存在,說(shuō)明理由.

分析 (1)推導(dǎo)出AE⊥CD,PQ⊥AE,從而SE⊥面ABCD,由此能證明面MNPQ⊥面SAE.
(2)以E為原點(diǎn),ED,EA,ES直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用向量法能求出t的值.

解答 (本小題滿分12分)
證明:(1)E為CD中點(diǎn),∴四邊形ABCE為矩形,
∴AE⊥CD,
當(dāng)t=$\frac{1}{2}$時(shí),Q為AD中點(diǎn),PQ∥CD,所以PQ⊥AE,
∵平面SCD⊥平面ABCD,SE⊥CD,∴SE⊥面ABCD,
∵PQ?面ABCD,∴PQ⊥SE,∴PQ⊥面SAE,
所以面MNPQ⊥面SAE.
(2)如圖,以E為原點(diǎn),ED,EA,ES直線分別為x軸,y軸,z軸建立如圖所示坐標(biāo)系;
設(shè)ED=a,則M((1-t)a,($\sqrt{3}t$-$\frac{\sqrt{3}}{2}$)a,$\frac{\sqrt{3}}{2}$a),E(0,0,0),A(0,$\sqrt{3}$,0),
Q((1-t)a,$\sqrt{3}ta$,0),$\overrightarrow{MQ}$=(0,$\frac{\sqrt{3}}{2}a$,$\frac{\sqrt{3}}{2}a$),
面ABCD一個(gè)方向向量為$\overrightarrow{m}$=(1,0,0),
設(shè)平面MPQ的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{MQ}=(1-t)ax+(\sqrt{3}t-\frac{\sqrt{3}}{2})ay+\frac{\sqrt{3}}{2}az=0}\\{\overrightarrow{n}•\overrightarrow{m}=x=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(0,$\frac{1}{t-\frac{1}{2}}$,2),
平面ABCD的法向量為$\overrightarrow{p}$=(0,0,1)
∵二面角M-PQ-A的平面角的余弦值為$\frac{\sqrt{5}}{5}$,
∴由題意:cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{p}|}{|\overrightarrow{n}|•|\overrightarrow{p}|}$=$\frac{2}{\sqrt{(\frac{1}{t-\frac{1}{2}})^{2}+4}}$=$\frac{\sqrt{5}}{5}$,
解得t=$\frac{1}{4}$或t=$\frac{3}{4}$,
由圖形知,當(dāng)t=$\frac{3}{4}$時(shí),二面角M-PQ-A為鈍二面角,不合題意,舍去
綜上:t=$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查面面垂直的證明,考查實(shí)數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-2y-2≤0}\\{x-1≥0}\end{array}\right.$,則3x-y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.$f(x)=\sqrt{2}sin({x+φ})-a+{e^{-x}}$,$φ∈({0,\frac{π}{2}})$,已知f(x)的圖象在(0,f(0))處的切線與x軸平行或重合.
(1)求φ的值;
(2)若對(duì)?x≥0,f(x)≤0恒成立,求a的取值范圍;
(3)利用如表數(shù)據(jù)證明:$\sum_{k=1}^{157}{sin\frac{kπ}{314}<106}$.
${e^{\frac{π}{314}}}$${e^{-\frac{π}{314}}}$${e^{\frac{78π}{314}}}$${e^{-\frac{78π}{314}}}$${e^{\frac{79π}{314}}}$${e^{-\frac{79π}{314}}}$
1.0100.9902.1820.4582.2040.454

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{5-x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,則f[f(-3)]=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)a=lg2,b=20.5,$c=cos\frac{3}{4}π$,則a,b,c按由小到大的順序是c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.小明、小剛、小紅等5個(gè)人排成一排照相合影,若小明與小剛相鄰,且小明與小紅不相鄰,則不同的排法有36種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,則S1•S2•S3•…•S10=$\frac{1}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.六名大四學(xué)生(其中4名男生、2名女生)被安排到A、B、C三所學(xué)校實(shí)習(xí),每所學(xué)校2人,且2名女生不到同一學(xué)校,也不到C學(xué)校,男生甲不到A學(xué)校,則不同的安排方法共有(  )
A.24B.36C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.將函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間是(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈z)$B.$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$
C.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$D.$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈z)$

查看答案和解析>>

同步練習(xí)冊(cè)答案