求函數(shù)y=(x+1)(x+2)(x+3)(x+4)+5在區(qū)間[-2,1]上的最大值和最小值.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:原函數(shù)可化為y=(x2+5x+5)2+4,即可得出結(jié)論.
解答: 解:y=(x+1)(x+2)(x+3)(x+4)+5
=(x+1)(x+2)(x+3)(x+4)+5
=(x+1)(x+4)(x+2)(x+3)+5
=[(x+1)(x+4)][(x+2)(x+3)]+5
=(x2+5x+4)(x2+5x+6)+5
=(x2+5x+4)(x2+5x+4+2)+1+4
=(x2+5x+4)2+2(x2+5x+4)+1+4
=(x2+5x+4+1)2+4
=(x2+5x+5)2+4
∴當(dāng)x2+5x+5=0即
5
-5
2
時(shí),ymin=4,
當(dāng)x=1時(shí),ymax=11.
點(diǎn)評:本題考查函數(shù)的最值問題,注意式子的合理變形,是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(m-2)x+m2+12為偶函數(shù),則m的值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過直線x+2y-3=0與2x-y-1=0的交點(diǎn)且和點(diǎn)(0,1)距離為
1
2
的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)有最小值-3,且函數(shù)y=f(x)的零點(diǎn)為-1和2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)圓錐體按如圖所示擺放,它的主視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯(cuò)誤的是( 。
A、BD∥平面CB1D1
B、AC1⊥BD
C、AC1⊥平面CB1D1
D、異面直線AC1與CB所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先將下列代數(shù)式化簡,再求值:(a+b)(a-b)+b(b-2),其中a=
2
,b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x≥1,命題q:x2≥x,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},在下圖中能表示從集合A到集合B的映射的是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案