A. | $\frac{1}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{3}{2}$ |
分析 由題意可得BC為圓O的直徑,畫出圖形,求出AC長(zhǎng)度及$\overrightarrow{CA}$與$\overrightarrow{CB}$的夾角,代入投影公式求解.
解答 解:∵$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,
∴$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OA}+\overrightarrow{AC}=\overrightarrow{0}$,得$\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,
則BC為圓O的直徑,如圖:
∵|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,∴△OAB的等邊三角形,
則OA=OB=AB=1,AC=$\sqrt{3}$,BC=2,
∴$\overrightarrow{CA}$與$\overrightarrow{CB}$夾角是30°,
∴向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影是|$\overrightarrow{CA}$|cos30°=$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=$\frac{3}{2}$.
故選:D.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查向量在向量方向上投影的概念,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9千臺(tái) | B. | 8千臺(tái) | C. | 7千臺(tái) | D. | 6千臺(tái) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若兩個(gè)平面平行于同一條直線,則這兩個(gè)平面平行 | |
B. | 若有兩條直線與兩個(gè)平面都平行,則這兩個(gè)平面平行 | |
C. | 若有一條直線與兩個(gè)平面都垂直,則這兩個(gè)平面平行 | |
D. | 若有一條直線與這兩個(gè)平面所成的角相等,則這兩個(gè)平面平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2 或-1 | C. | -2或1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com