10.設(shè)等差數(shù)列{an}的前n項和Sn,a1+a2=-20,a4+a6=-6,則當(dāng)Sn取最小值時,n等于(  )
A.6B.7C.8D.9

分析 利用等差數(shù)列的通項公式可得an,令an≤0,解得n即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a1+a2=-20,a4+a6=-6,
∴2a1+d=-20,2a1+8d=-6,
解得a1=-11,d=2.
可得an=-11+2(n-1)=2n-13.
令an≤0,解得$n≤\frac{13}{2}$,即n≤6.
則當(dāng)Sn取最小值時,n=6.
故選:A.

點評 本題考查了等差數(shù)列的通項公式與求和公式及其單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1過點M(2,0),N(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)直線y=kx(k∈R,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=cosx-sinx,f'(x)為函數(shù)f(x)的導(dǎo)函數(shù),那么$f'({\frac{π}{2}})$等于( 。
A.-1B.1C.0D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l1:ax+2y+6=0和直線l2:x+(a-1)y+a2-1=0
(1)當(dāng)l1⊥l2時,求a的值;
(2)在(1)的條件下,若直線l3∥l2,且l3過點A(1,-3),求直線l3的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an}滿足an>0,$a_4^2+a_7^2+2{a_4}{a_7}=9$,則其前10項之和為( 。
A.-9B.15C.-15D.±15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.${({\sqrt{3}x-1})^3}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}$,則(a0+a22-(a1+a32的值為( 。
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知A${\;}_{n}^{2}$=132,則n等于( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)$f(x)=2\sqrt{3}sin(ωx+\frac{π}{3})(ω>0)$在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若$f({x_0})=\frac{{8\sqrt{3}}}{5}$,且${x_0}∈(-\frac{10}{3},\frac{2}{3})$,求f(x0+1)的值;
(3)將函數(shù)y=f(x)的圖象上各點的縱坐標(biāo)變?yōu)樵瓉淼?\frac{{\sqrt{3}}}{6}$倍,橫坐標(biāo)不變,再將所得圖象各點的橫坐標(biāo)變?yōu)樵瓉淼摩乇,縱坐標(biāo)不變,最后將所得圖象向右平移$\frac{π}{3}$個單位,得到y(tǒng)=g(x)的圖象,若關(guān)于x的方程2[g(x)]2-4ag(x)+1-a=0在區(qū)間[0,π]上有兩個不同解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.凸邊形的性質(zhì):如果函數(shù)f(x)在區(qū)間D上的是凸變形,則對于區(qū)間D內(nèi)的任意n個自變量x1,x2,…,xn,有$\frac{{f({x_1})+f({x_2})+…+f({x_n})}}{n}≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n})$,當(dāng)且僅當(dāng)x1=x2=…=xn時等號成立,已知函數(shù)y=sinx上是凸函數(shù),
則在△ABC中,sinA+sinB+sinC的最大值為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案