α,β是一組基底,向量γ=xα+yβ(x,yR),則稱(x,y)為向量γ在基底α,β下的坐標(biāo),現(xiàn)已知向量a在基底p=(1,-1),q=(2,1)下的坐標(biāo)為(-2,2),a在另一組基底m=(-1,1),n=(1,2)下的坐標(biāo)為(  )

(A)(2,0)(B)(0,-2)(C)(-2,0) (D)(0,2)

 

D

【解析】由已知a=-2p+2q=(-2,2)+(4,2)=(2,4),

設(shè)a=λm+μn=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),

則由解得

a=0m+2n,a在基底m,n下的坐標(biāo)為(0,2).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

C1:x2+y2+2x-3=0和圓C2:x2+y2-4y+3=0的位置關(guān)系為(  )

(A)相離  (B)相交  (C)外切  (D)內(nèi)含

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,EFG是邊長為2的等邊三角形,f(1)的值為(  )

(A)- (B)- (C) (D)-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知四點(diǎn)A(x,0),B(2x,1),C(2,x),D(6,2x).

(1)求實(shí)數(shù)x,使兩向量,共線.

(2)當(dāng)兩向量共線時(shí),A,B,C,D四點(diǎn)是否在同一條直線上?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,在直角梯形ABCD,ABCD,AD=CD=1,AB=3,動(dòng)點(diǎn)P在△BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)=α+β,則α+β的最大值是(  )

(A)(B)(C)(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十八第四章第四節(jié)練習(xí)卷(解析版) 題型:解答題

已知A,B,C三點(diǎn)的坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),其中α∈(,).

(1)||=||,求角α的值.

(2)·=-1,tan(α+)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十八第四章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

已知偶函數(shù)f(x)滿足:f(x)=f(x+2),且當(dāng)x[0,1]時(shí),f(x)=sinx,其圖象與直線y=y軸右側(cè)的交點(diǎn)按橫坐標(biāo)從小到大依次記為P1,P2,,·等于(  )

(A)2(B)4(C)8(D)16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十五第四章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

在△ABC,=2,=m+n,的值為(  )

(A)2(B)(C)3(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十三第三章第七節(jié)練習(xí)卷(解析版) 題型:解答題

在△ABC,a,b,c分別為角A,B,C的對邊.已知a=1,b=2,sinC=(其中C為銳角).

(1)求邊c的值.

(2)sin(C-A)的值.

 

查看答案和解析>>

同步練習(xí)冊答案