【題目】已知函數(shù)f(x)=x3﹣2x+ex﹣ ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實(shí)數(shù)a的取值范圍是 .
【答案】[-1, ]
【解析】解:函數(shù)f(x)=x3﹣2x+ex﹣ 的導(dǎo)數(shù)為:
f′(x)=3x2﹣2+ex+ ≥﹣2+2 =0,
可得f(x)在R上遞增;
又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣ex+x3﹣2x+ex﹣ =0,
可得f(x)為奇函數(shù),
則f(a﹣1)+f(2a2)≤0,
即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),
即有2a2≤1﹣a,
解得﹣1≤a≤ ,
故答案為:[﹣1, ].
求出f(x)的導(dǎo)數(shù),由基本不等式和二次函數(shù)的性質(zhì),可得f(x)在R上遞增;再由奇偶性的定義,可得f(x)為奇函數(shù),原不等式即為2a2≤1﹣a,運(yùn)用二次不等式的解法即可得到所求范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x∈[-,],
(1)求函數(shù)y=cosx的值域;
(2)求函數(shù)y=-3sin2x-4cosx+4的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于三個(gè)實(shí)數(shù)、、,若成立,則稱、具有“性質(zhì)”.
(1)試問:①,0是否具有“性質(zhì)2”;
②(),0是否具有“性質(zhì)4”;
(2)若存在及,使得成立,且
,1具有“性質(zhì)2”,求實(shí)數(shù)的取值范圍;
(3)設(shè),,,為2019個(gè)互不相同的實(shí)數(shù),點(diǎn)()
均不在函數(shù)的圖象上,是否存在,且,使得、
具有“性質(zhì)2018”,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在非零實(shí)數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù).
(1)求的值;
(2)求證: ;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為常數(shù),且,,.
(I)若方程有唯一實(shí)數(shù)根,求函數(shù)的解析式.
(II)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值.
(III)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},則方程f(x)﹣lgx=0的解的個(gè)數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時(shí)隨機(jī)選擇手心或手背其中一種手勢,規(guī)定相同手勢人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時(shí),<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,過點(diǎn)P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com