【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.
下列命題:
①“囧函數(shù)”的值域為;
②“囧函數(shù)”在上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于軸對稱;
④“囧函數(shù)”有兩個零點;
⑤“囧函數(shù)”的圖象與直線至少有一個交點.其中正確命題的個數(shù)為( )
A. 1 B. 2
C. 3 D. 4
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機,若要擊落敵機,需命中機首2次或命中機中3次或命中機尾1次,已知A每次射擊,命中機首、機中、機尾的概率分別為0.2、0.4、0.1,未命中敵機的概率為0.3,且各次射擊相互獨立。若A至多射擊兩次,則他能擊落敵機的概率為( )
A. 0.23 B. 0.2 C. 0.16 D. 0.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問:是否存在過點的平面分別交,于點,使得平面平面?若存在,求出的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家劉徽是公元三世紀世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細割圓,并使正多邊形的周長無限接近圓的周長,進而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑
,此時圓內(nèi)接正六邊形的周長為
,此時若將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3,當用正二十四邊形內(nèi)接于圓時,按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
.
(1)求
在
處的切線方程;
(2)令
,求
的單調(diào)區(qū)間;
(3)若任意
且
,都有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,已知曲線,將曲線上所有點橫坐標,縱坐標分別伸長為原來的倍和倍后,得到曲線
(1)試寫出曲線的參數(shù)方程;
(2)在曲線上求點,使得點到直線的距離最大,并求距離最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列5個命題中正確命題的個數(shù)是( )
①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;
②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;
④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;
⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點,直線與(為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的無量綱指數(shù),參與空氣質(zhì)量評價的主要污染物為等六項.空氣質(zhì)量按照大小分為六級:一級為優(yōu);二級為良好;三級為輕度污染;四級為中度污染;五級為重度污染;六級為嚴重污染.
某人根據(jù)環(huán)境監(jiān)測總站公布的數(shù)據(jù)記錄了某地某月連續(xù)10天的莖葉圖如圖所示:
(1)利用訪樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算);
(2)若從樣本中的空氣質(zhì)量不佳()的這些天中,隨機地抽取三天深入分析各種污染指標,求這三天的空氣質(zhì)量等級互不相同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com