【題目】某工廠的,,三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測:
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產(chǎn)品來自相同車間的概率.
【答案】(1)1,2,3;(2).
【解析】
(1)先求得分層抽樣的抽樣比,由此求得這6件樣品中來自,,各車間產(chǎn)品的數(shù)量.
(2)利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.
(1)因為樣本容量與總體中的個體數(shù)的比是,
所以車間產(chǎn)品被選取的件數(shù)為,
車間產(chǎn)品被選取的件數(shù)為,
車間產(chǎn)品被選取的件數(shù)為.
(2)設(shè)6件自三個車間的樣品分別為:;,,;,.
則從6件樣品中抽取的這2件產(chǎn)品構(gòu)成的所有基本事件為:
,,,,,,,,
,,,,,,,共15個.
每個樣品被抽到的機會均等,因此這些基本事件的出現(xiàn)是等可能的.
記事件:“抽取的這2件產(chǎn)品來自相同車間”,
則事件包含的基本事件有:
,,,,共4個
所以.
所以這2件商品來自相同車間的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】魏晉時期數(shù)學家劉徽在為《九章算術(shù)》作注時,提出利用“牟合方蓋”解決球體體積,“牟合方蓋”由完全相同的四個曲面構(gòu)成,相對的兩個曲面在同一圓柱的側(cè)面上,正視圖和側(cè)視圖都是圓,每一個水平截面都是正方形,好似兩個扣合(牟合)在一起的方形傘(方蓋).二百多年后,南北朝時期數(shù)學家祖暅在前人研究的基礎(chǔ)上提出了《祖暅原理》:“冪勢既同,則積不容異”.意思是:兩等高立方體,若在每一等高處的截面積都相等,則兩立方體體積相等.如圖有一牟合方蓋,其正視圖與側(cè)視圖都是半徑為的圓,正邊形是為體現(xiàn)其直觀性所作的輔助線,根據(jù)祖暅原理,該牟合方蓋體積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是半圓的直徑,平面與半圓所在的平面垂直,,, ,是半圓上不同于,的點,四邊形是矩形.
(Ⅰ)若,證明:平面;
(Ⅱ)若,求三棱錐體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C過點,且與圓外切于點,過點作圓C的兩條切線PM,PN,切點為M,N.
(1)求圓C的標準方程;
(2)試問直線MN是否恒過定點?若過定點,請求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】α,β是兩個不重合的平面,在下列條件中,可判斷平面α,β平行的是( )
A. m,n是平面內(nèi)兩條直線,且,
B. 內(nèi)不共線的三點到的距離相等
C. ,都垂直于平面
D. m,n是兩條異面直線,,,且,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, , , .給出以下三個命題:
①分別過點, ,作的不同于軸的切線,兩切線相交于點,則點的軌跡為橢圓的一部分;
②若, 相切于點,則點的軌跡恒在定圓上;
③若, 相離,且,則與, 都外切的圓的圓心在定橢圓上.
則以上命題正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com